• 제목/요약/키워드: Piezoelectric Film

검색결과 364건 처리시간 0.028초

Role of Am Piezoelectric Crystal Orientation in Solidly Mounted Film Bulk Acoustic Wave Resonators

  • Lee, Si-Hyung;Kang, Sang-Chul;Han, Sang-Chul;Ju, Byung-Kwon;Yoon, Ki-Hyun;Lee, Jeon-Kook
    • 한국세라믹학회지
    • /
    • 제40권4호
    • /
    • pp.393-397
    • /
    • 2003
  • To investigate the effect of AIN c-axis orientation on the resonance performance of film bulk acoustic wave resonators, solidly mounted resonators with crybtallographically different AIN piezoelectric films were prepared by changing only the bottom electrode surface conditions. As increasing the degree of c-axis texturing, the effective electromechanical coupling coefficient ($\kappa$$\_$eff/)$^2$ in resonators increased gradually. The least 4 degree of full width at half maximum in an AIN(002) rocking curve, which corresponds to $\kappa$$^2$$\_$eff/ of above 5%, was measured to be necessary for band pass filter applications in wireless communication system. The longitudinal acoustic wave velocity of AIN films varied with the degree of c-axis texturing. The velocity of highly c-axis textured AIN film was extracted to be about 10200 n/s by mathematical analysis using Matlab.

초기변형 최소화를 위한 광변조 압전 다층박막 액추에이터의 설계, 제작 및 실험 (Design Fabrication and Test of Piezoelectric Multi-Layer Cantilever Microactuators for Optical Signal Modulation)

  • 김명진;조영호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.495-501
    • /
    • 2000
  • This paper presents a method to minimize the initial deflection of a multi-layer piezoelectric microactuator without loosing its piezoelectric deflection performance required for light modulating micromirror devices. The multi-layer piezoelectric actuator composed of PZT silicon nitride and platinum layers deflects or buckles due to the gradient of residual stress. Based on the structural analysis results and relationship between process conditions and mechanical properties we have modified the fabrication process and the thickness of thin film layers to reduce the initial residual stress deflection without decreasing its piezoelectric deflection performance. The modified designs fabricated by surface-micromachining process achieved the 77% reduction of the initial deflection compared with that of the conventional method based on the measured micromechanical material properties is applicable to the design refinement of multi-layer MEMS devices and micromechanical structures.

  • PDF

Planar Type Flexible Piezoelectric Thin Film Energy Harvester Using Laser Lift-off

  • Noh, Myoung-Sub;Kang, Min-Gyu;Yoon, Seok Jin;Kang, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.489.2-489.2
    • /
    • 2014
  • The planar type flexible piezoelectric energy harvesters (PEH) based on PbZr0.52Ti0.48O3 (PZT) thin films on the flexible substrates are demonstrated to convert mechanical energy to electrical energy. The planar type energy harvesters have been realized, which have an electrode pair on the PZT thin films. The PZT thin films were deposited on double side polished sapphire substrates using conventional RF-magnetron sputtering. The PZT thin films on the sapphire substrates were transferred by PDMS stamp with laser lift-off (LLO) process. KrF excimer laser (wavelength: 248nm) were used for the LLO process. The PDMS stamp was attached to the top of the PZT thin films and the excimer laser induced onto back side of the sapphire substrate to detach the thin films. The detached thin films on the PDMS stamp transferred to adhesive layer coated on the flexible polyimide substrate. Structural properties of the PZT thin films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). To measure piezoelectric power generation characteristics, Au/Cr inter digital electrode (IDE) was formed on the PZT thin films using the e-beam evaporation. The ferroelectric and piezoelectric properties were measured by a ferroelectric test system (Precision Premier-II) and piezoelectric force microscopy (PFM), respectively. The output signals of the flexible PEHs were evaluated by electrometer (6517A, Keithley). In the result, the transferred PZT thin films showed the ferroelectric and piezoelectric characteristics without electrical degradation and the fabricated flexible PEHs generated an AC-type output power electrical energy during periodically bending and releasing motion. We expect that the flexible PEHs based on laser transferred PZT thin film is able to be applied on self-powered electronic devices in wireless sensor networks technologies. Also, it has a lot of potential for high performance flexible piezoelectric energy harvester.

  • PDF

BaTiO3 압전 나노튜브 어레이 기반의 플렉서블 에너지 하베스터 제작 (Fabrication of Flexible Energy Harvester Based on BaTiO3 Piezoelectric Nanotube Arrays)

  • 윤서영;김철민;배빛나;나유진;장학수;박귀일
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.521-527
    • /
    • 2023
  • Piezoelectric technology, which converts mechanical energy into electrical energy, has recently attracted drawn considerable attention in the industry. Among the many kinds of piezoelectric materials, BaTiO3 nanotube arrays, which have outstanding uniformity and anisotropic orientation compared to nanowire-based arrays, can be fabricated using a simple synthesis process. In this study, we developed a flexible piezoelectric energy harvester (f-PEH) based on a composite film with PVDF-coated BaTiO3 nanotube arrays through sequential anodization and hydrothermal synthesis processes. The f-PEH fabricated using the piezoelectric composite film exhibited excellent piezoelectric performance and high flexibility compared to the previously reported BaTiO3 nanotube array-based energy harvester. These results demonstrate the possibility for widely application with high performance by our advanced f-PEH technique based on BaTiO3 nanotube arrays.

Simulation of Piezoelectric Dome-Shaped-Diaphragm Acoustic Transducers

  • Han, Cheol-Hyun;Kim, Eun-Sok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권1호
    • /
    • pp.17-23
    • /
    • 2005
  • This paper describes the simulation of a micromachined dome-shaped-diaphragm acoustic transducer built on a $1.5{\mu}m$ thick silicon nitride diaphragm ($2,000{\mu}m$ in radius, with a circular clamped boundary on a silicon substrate) with electrodes and piezoelectric ZnO film in a silicon substrate. Finite element analysis with ANSYS 5.6 has been performed to analyze the static and dynamic behaviors of the transducer under both pressure and voltage loadings.

졸겔 법으로 제조한 압전 센서용 PZT 박막의 결정 배향 및 전기적 특성 연구 (A study on the crystalline orientation and electric properties of sol-gel PZT thin film for piezoelectric sensors)

  • 변진무;이호년;이홍기;이성의;이희철
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.202-208
    • /
    • 2010
  • This study examined the dependency of crystalline orientation and electric properties of sol-gel PZT film on hydrolysis, a $PbTiO_3$ seed layer and a concentration of sol-gel solution. The PZT thin films were prepared by using 2-Methoxyethanol-based sol-gel method and spin-coating on Pt/Ti/$SiO_2$/Si substrates. The 1-${\mu}m$-thick PZT films were coated and then fired in a furnace by direct insert method. The highly (111) oriented PZT film of pure perovskite structure could be obtained. We could control the degree of orientation by various parameters such as hydrolysis, a $PbTiO_3$ seed layer and a concentration of sol-gel solution. The highest measured remanent polarization, dielectric constant and piezoelectric coefficient are $24.16\;{\mu}C/cm^2$, 2808, and 159 pC/N, respectively.

딥코팅에 의한 실크 피브로인막으로 제조한 바이오 압전발전기 (Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method)

  • 김민수;박상식
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.487-494
    • /
    • 2021
  • Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.

전기유동유체와 압전필름 액튜에이터를 이용한 스마트 외팔보의 진동제어 (Vibration Control of a Smart Cantilevered Beam Using Electro-Rheological Fluids and Piezoelectric Films Actuators)

  • Park, Y.K.;Park, S.B.
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.119-125
    • /
    • 1997
  • This paper deals with an experimental investigation on an active vibration control of ahybrid smart structure(HSS) via an electro-rheological fluid actuator(ERFA) and a piezoelectric film actuator(PFA). Firstly, an HSS is constructed by inserting a silicone oil-based electro-rheological fluid into a hollow can- tilevered beam and perfectly bonding piezoelectric films ofn the upper and lower surfaces of the beam as an actuator and a sensor, respectively. The control scheme of the ERFA tuning stiffness and damping charac- teristics of the HSS with imposed electric fields is formulated as a function of excitation frequencies on the basis of field-dependent respnses. On the other hand, as for the control scheme of the PFA permitting control voltages to generate axial forces or bending moments for suppressing deflections of the HSS, a neuro sliding mode controller(NSC) is employed. Furthermore, an experimental implementation activating the ERFA and the PFA independently is established to carry out an active vibration control in both the transient and forced vibrations. The experimental results exhibit a superior ability of the gtbrid actuation system to tailor elastodynamic response characteristics of the HSS rather than a single class of actuator system alone.

  • PDF

하부전극층의 두께가 ZnO 압전변환기의 음향대역특성에 미치는 영향 (The Effect on Acoustic Band Characteristics of ZnO Piezoelectric Transducer according to Thickness of Counter Electrode Layers)

  • 박기엽;이종덕;박순태
    • 대한전자공학회논문지TE
    • /
    • 제37권1호
    • /
    • pp.18-26
    • /
    • 2000
  • 본 논문에서는 광대역 특성을 가진 고주파 압전 변환기를 이론적으로 고찰하였고, 압전변환기를 제작하여 이론값과 실험값을 비교, 분석하여 그 응용가능성을 확인하였다. ZnO(3.825${\mu}m$/Pt/Sapphire(0001)구조의 압전변환기의 공진주파수는 827.47MHz로서 압전체의 반파장주파수에서 공진이 일어남을 알 수 있었다. 또한, 삽입손실은 약 -50dB이었고, 최소의 삽입손실은 이론적인 분석과 잘 일치하였다.

  • PDF

CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성 (Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics)

  • 정귀상;이병철
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.