• Title/Summary/Keyword: Piezo stage

Search Result 62, Processing Time 0.03 seconds

Ultra precision positioning system for Servo Motor-Piezo actualtor using dual servo loop (이중서보제어루프를 통한 서보모터-압전구동기의 초정밀위치결정 시스템)

  • 이동성;박종호;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.437-441
    • /
    • 1995
  • In this paper, the ultra precision positioning system for servo motor and piezo actuator using dual servo loop control has been developed. For positioning system having long distance with ultra precision, the combination of global stage and micro stage is required. Servo moter and ball screw are used as a master stage and piezo acuator as a fine stage. By using this system, an positional precision witin .+-. 30nm has been achieved at dual servo loop control. When using micro stage, an positional precision within .+-. 10nm has been achieved. This result can be applied to develop semiconductor equipment such as wafer stepper.

  • PDF

A Piezo-Driven Miniaturized XY Stage with Two Prismatic-Prismatic Joints Type Parallel Compliant Mechanism (2 개의 병진-병진 관절형 병렬 탄성 메커니즘을 갖는 압전구동 소형 XY 스테이지)

  • Choi, Kee-Bong;Lee, Jae Jong;Kim, Gee Hong;Lim, Hyung Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1281-1286
    • /
    • 2013
  • In this paper, a miniaturized stage with two prismatic-prismatic joints (2-PP) type parallel compliant mechanism driven by piezo actuators is proposed. This stage consists of two layers which are a motion guide layer and an actuation layer. The motion guide layer has 2-PP type parallel compliant mechanism to guide two translational motions, whereas the actuation layer has two leverage type amplification mechanisms and two piezo actuators to generate forces. Since the volume of the stage is too small to mount displacement sensors, the piezo actuators embedding strain gauge sensors are chosen. With the strain gauge-embedded piezo actuators, a semi-control is implemented, which results in hysteresis compensation of the stage. As the results, the operating range of $30{\mu}m$, the resolution of 20 nm, and the bandwidth of 400 Hz in each axis were obtained in the experiments.

Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage (3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계)

  • Kim, Jung Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

A Piezo-driven Ultra-precision Stage for Alignment Process of a Contact-type Lithography (접촉식 리소그라피의 정렬공정을 위한 압전구동 초정밀 스테이지)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Gee-Hong;Lim, Hyung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.756-760
    • /
    • 2011
  • This paper proposed an alignment stage driven by piezo actuators for alignment process of a contact-type lithography. Among contact-type lithography processes, an UV-curable nanoimprint process is an unique process to be able to align patterns on upper and lower layers. An alignment stage of the UV-curable nanoimprint process requires nano-level resolution as well as high stiffness to overcome friction force due to contact moving. In this paper, the alignment stage consists of a compliant mechanism using flexure hinges, piezo actuators for high force generation, and capacitive sensors for high-resolution measurement. The compliant mechanism is implemented by four prismatic-prismatic compliant chains for two degree-of-freedom translations. The compliant mechanism is composed of flexure hinges with high stiffness, and it is directly actuated by the piezo actuators which increases the stiffness of the mechanism, also. The performance of the ultra-precision stage is demonstrated by experiments.

Dynamic Analysis of the Piezo-Actuator for a New Generation Lithography System (차세대 리소그라피 시스템을 위한 압전구동기의 동적 해석)

  • Park, Jae-Hak;Jung, Jong-Chul;Huh, Kun-Soo;Chung, Chung-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.472-477
    • /
    • 2003
  • A piezo-actuator is an important component for an E-beam lithography system. But it is very difficult to model its characteristics due to nonlinearities such as hysteresis and creep, to the input voltage. In this paper, one-axis micro stage with a piezo-actuator is modeled including the nonlinear properties. Hysteresis and creep are modeled as the first order differential equation and a time-dependent logarithmic function, respectively. The dynamic motion of the stage is also modeled as a mass-spring-damper system and the parameters are determined by utilizing the system identification technique. The simulation tool for a micro stage is constructed using the commercial software and its simulation results are compared with the experimental data.

Development of a Simulation Tool of a Two-Axis Nano Stage for a New Generation Lithography System (차세대 리소그라피 시스템을 위한 2축 나노스테이지의 시뮬레이션 툴 구축)

  • Yoo Gunmo;Jung Jongchul;Chung Chung Choo;Huh Kunsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1541-1548
    • /
    • 2004
  • A nano-stage simulation tool is developed for an advanced E-beam lithography system. Even if piezo-actuators are believed to be compatible fer the E-beam lithograpy system it is difficult to predict their characteristics due to their nonlinearities such as hysteresis and creep. In this paper, the nonlinear properties are modeled for a piezo-actuator by considering the voltage range and speed variations. The hysteresis is described as the first order differential equation with 24 sets of parameters and the creep is modeled as a time-dependent logarithmic function with 2 sets of a parameter. A two-axis nano stage with piezo-actuators are investigated for realizing nano scale motions. The characteristics of flexure guide mechanisms are analyzed based on the finite element method using the ANSYS software. The simulation tool for the nano stage is constructed by using the RecurDyn software. The dynamic response of the nano stage is obtained in simulations and compared with the experimental data.

Ultra Precision Positining System for Servo Motor-piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation (이중서보제어루프와 디지털 필터를 통한 서보모터-업전구동기의 초정밀위치결정 시스템 개발)

  • Lee, Dong-Sung;Park, Jong-Ho;Park, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.154-163
    • /
    • 1999
  • In this paper, an ultra precision positioning system has been developed using dual servo loop control. For positioning system having long distance with ultra precision , the combination of global stage and micro stage was required. A servo motor based ball screw is used as a global stage and the piezo actuator as a micro stage. For the improvement of positional precision, the digital Chebyshev filter is implemented in the developed to dual servo system. Therefore, the positional repeatability has been achieved within ${\pm}$ 10 mm, and this technique can be applied to develop precision semiconductor equipments such as lithography steppers and probers.

  • PDF

A Study on the Optimal Structural Design and Ultra Precision Position Control using FEM for Micro Stage (마이크로 스테이지의 유한요소법을 이용한 최적설계와 초정밀 위치제어에 관한 연구)

  • Kim, J. Y.;Han, J. H.;Kim, H. W.;You, S.;Kwac, L. K.;Song, I. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.336-340
    • /
    • 1997
  • For optimal design of micro stage, we were measured to displacement of piezo-electric transducer that was based on voltage value. And then researchers were analyzed to microstage through FEM with displacement data including voltage value of piezo-electric transducer. For verification of analyzing results, we were gauged on displacement by using Laser-interferometer. And researchers were confirmed to propriety of micro stage design with FEM, were obtained error rate that are 3.5% between measurement results and analyzing results.

  • PDF