• Title/Summary/Keyword: Pier Construction

Search Result 180, Processing Time 0.022 seconds

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

An Experimental Study on Development Connection System of Concrete Barrier in Modular Bridges (조립식교량의 콘크리트 방호울타리 연결시스템 개발을 위한 실험적 연구)

  • Jung, Ho Sung;Lee, Sang Seung;Choi, Jin Woong;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period. However, main stream of the study is limited to the pier, girder and deck of bridge, which are huge or main members. Studies on incidental facilities like concrete barrier is out of sight. Thus, in this study, connection system of concrete barrier was developed to apply to modular bridges and static experiment was performed in order to verify structural capability of proposed system. Variables of experiment are composed of bolt direction such as vertical and horizontal. The experimentation due to the designed variables was conducted by comparison with a standard concrete barrier, which is a traditional barrier. As a result, vertical joint way of the bolt showed nearly identical structural performance and healthy to standard specimen's. it can be applied to modular bridges.

Analysis of Sedimentary Environment and Micro-Landform Changes Afterthe Construction of Artificial Structuresin the Tidal Flat of Anmyeondo Gagyeongju, Western Coast of Korea (인공구조물 건설 후 안면도 가경주 간석지의 퇴적환경 및 미지형변화 분석)

  • JANG, Dong-Ho;Ryu, Ju-Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.31-45
    • /
    • 2018
  • This study investigated the characteristics of sedimentary environment changes across a tidal flat in Gagyeongju of Anmyeondo Island. We performed a spatio-temporal analysis on the grain sizes composition of sediments and micro-landform changes during the winter from 2013 to 2016. The results showed that erosion was a dominant processthroughout the study flat, reducing the surface elevation even by 1 m around the upper sand flat. As a consequence, headlands have formed in the entire region of Gagyeongju village. In addition, erosion quickly progressed along the low-lying subtidal zone and tide way and, in contrast, sedimentation progressed in the mid-elevation tidal flat. We posit that a jetty, which had been constructed as a pier facility on the eastern part of the study area, interfered with the flow of tidal current, thereby enhancing these erosional processes. This is because such interference can block the supply of fine-textured sediments from the nearby Cheonsu Bay and therefore reduce surface elevation. According to the surface sediment analysis, the sediments were categorized into 7 sedimentary facies, and generally displayed a high ratio of silt and clay. The result of time-series analysis (2012-2013) showed that the sediments on the tidal flat became fine-grained, and that sorting became worse. However, the sediments on the subtidal zone, embayment and along inside of the jetty tended to be coarse-grained. In conclusion, the tidal flat microlandform change in the study area was caused by a disruption in the seawater circulation due to the jittery construction within the tidal flat, which had a direct effect on erosional and sedimentary environment processes.

Analysis on the Damage Status by Diagnostical Methodology for the Improvement Landscape on the Supyo-bridge at Chunggae-stream (청계천 수표교(水標橋)의 경관 향상을 위한 진단학적(診斷學的) 훼손상태 분석)

  • An, Jin-Sung;Choi, Ah-Hyun;Kim, Yu-Il
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.105-113
    • /
    • 2010
  • This study is for the preservation plan of the tradition space which is performed by the damage status analysis through performing the value assessment. Especially, it is an experimental study for finding the process and methods by analyzing the major element for the value assessment of the selected object's damage status through the expert group who are systematized in their interest to conserve the traditional structure in traditional space. For that purpose, this study should be performed by the fundamental understanding of the physical property of the Supyo-bridge and the condition of the selected site's environment. Meanwhile, this study has been done that 'map of the damage status distribution' for making records of damage status of the Supyo-bridge on the property utilized field measurement adapted by photogrammetry and assessment guidelines, which are for investigation on damage status of objects that are standardized 'Raccomandazioni Normal' which could be said construction culture assets management guidelines of Italian government. As the result of investigation, damage status of each part in the Supyo-bridge was mostly composed of damage by sediment and corrosion and in case of 9 damage types including corrosion, in consideration of physical and chemical properties and distribution status of those elements, it is made an judgement that is not working as a threatened factor regarding security of the Supyo-bridge. On the contrary, for the improvement landscape, in case of 'Thermoclastism' phenomenon observed in 'upper floor', 'Myungae stone' and 'bridge pier' is that when taking it into consideration that is widely distributed concentrated on the bridge pier, surface reinforcement job along with elimination of damage part will be judged to be requested for earliest treatment.

A Case Study of Underwater Blasting (수중발파 사례 연구)

  • 정민수;박종호;송영석
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2004
  • There are two major types of underwater blasting at Korea, bridges and harbor construction work. Pier blasting for lay the foundation bridges construction is used dry excavation working (drilling and charging) after pump out water and then fire pump in water that is same as bench blasting. In contrast, underwater blasting for harbor construction and increase of harbor load depth is used to barge with digging equipment that is in oder to drilling on the surface and blasting work(charge, hook-up) under water. Thus, there are need to special concern such as charge method and hook-up method different from tunnel blasting work and bench blasting work. If do not use special concern breaks out dead pressure and mis fire because of there are so many difficult condition such as water pressure, obstruct field of vision. In this study underwater blasting at Busan Harbor Construction have consider with special concern that is plastic pipe charge method used to MegaMITE I and specialized buoy hook- up method make far initial system detonate on the surface used to TLD. The results is designed blast pattern charge per delay effect an inspection of verify between predict velocity and measure velocity. minimized break out mis fire consideration charge method, hook up method. According to result best underwater blasting design is 105mm drilling dia, MeGAMITE II, HiNLL Plus(non electric detonator).

Estimation of Appropriate Reinforcement Length of Casing for the Pile of Pile Bent System through Numerical Analysis (수치해석을 통한 단일형 현장타설말뚝 외부강관의 적정 보강길이 산정)

  • Yang, Wooyeol;Kim, Wanho;Lee, Kangil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.6
    • /
    • pp.5-15
    • /
    • 2021
  • One of the construction methods applied as a pier foundation type is a single type cast-in-place pile. In applying a pile bent system as a foundation type, the main concern in designing can be said to secure the lateral bearing capacity of pile structure in system. In addition, to increase the rigidity of the pile structure, a method of increasing the lateral bearing capacity by reinforcing the pile structure with a casing has been used. However, although the reinforcing effect and appropriate reinforcing length of casing may vary depending on the soil conditions, there is insufficient studies on this, and for this reason, the entire pile structure in a pile bent system is reinforced with a casing, in the field. In addition, if the length of the entire pile is reinforced with a casing, it may lead to delays in construction and increase in construction costs. That is, in order to more effectively reinforce the pile structure with a casing, it is necessary to study the lateral bearing characteristics of the reinforced pile structure in system. And it should be determined the appropriate reinforcing length of the casing from the evaluated bearing characteristics. Therefore, in this study, the lateral bearing characteristics of piles applied with the reinforcing length of casing for each condition were evaluated through a numerical analysis. And, based on the analysis results, the appropriate reinforcing length of casing was proposed. As a result of the study, it was found that in order to effectively increase the lateral bearing capacity of pile structure, the reinforcing length of casing should be applied twice the influence range of the bending behavior of the pile, 1/β.

Characterization of Leaching Behaviour of Recycled Concrete for Environmental Assessment (용출특성규명을 통한 재생골재 환경성 평가)

  • Kang, S.H.;Lee, S.H.;Kwak, K.S.;Lee, J.Y.;Chung, M.K.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.293-301
    • /
    • 2005
  • We conducted several different leaching experiments for assessing the potential environmental risk when utilizing recycled concrete for stabilizing bridge pier. The methods include continuous batch leaching test (DIN 38414-S4), availability test (NEN 7341), pH-stat test (CEN/TC 292/WG6) and tank diffusion test (NEN 7345). The concentration ranges vary depending on the testing method. Nearly all the trace elements were low, some elements recording under detection limit. The maximum concentrations for trace elements leached throughout the whole tests are (as mg/L); Cd (0.029), Cu (0.437), Pb (0.14), Ni, Zn (0.95), Hg (0.005). Although the testing methods we used in this study are much more rigorous than other commonly adapted method including TCLP and domestic testing method for solid waste, the trace elemental concentrations are under the criteria for hazardous material set by the TCLP and domestic method. The result seems to suggest that applying the recycled concrete on stream water will be accepatable practice as for as trace elements are concerned. However, the influence of inorganics such as Ca, Mg, Ni and $SO_4^{2-}$ on aquatic ecology should be further examined.

Influences of Grouting Pressure of Microcement to Upper Structures (지반보강용 마이크로시멘트의 주입압이 상부구조물에 미치는 영향)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.70-77
    • /
    • 2010
  • Microcement grouting and micro pile are frequently used for ground modification during tunnel construction. The influence of grouting pressure of microcement grouting and micro pile to the existing bridge which is directly over the constructing tunnel is investigated. Three dimensional seepage flow-structure interactive analysis considering firm water pressure with full stages of construction including the construction of upper bridge, microcement grouting, micro pile and tunnel is performed. The settlement and tilting of the pier of existing bridge violate the design code and the reaction of the bridge are highly increased after grouting. The stress of tunnel bracings such as rockbolt and shotcrete also exceed the limit of the code. The pressure of microcement grouting is confined by bedrock and transmit to the surrounded soil and the upper bridge. Microcement grouting needs mid-high pressure to penetrate through weak fault plane and the pressure greatly influence the safety of the upper structure. It is important to decide and care the grouting pressure to improve weak fault plane directly under the existing structures and the pressure of microcement grouting should be considered in underground analysis.

Development and Utilization of Linked Data of Port Maintenance Information for Port Facilities Based on Port BIM Standards (항만 BIM 표준 기반 항만 유지관리 정보의 링크드데이터 구축 및 활용)

  • Shin, Jaeyoung;Moon, Hyounseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.501-510
    • /
    • 2023
  • The importance of using construction data is increasing in accordance with the recent trend in the smart construction. However, construction project and maintenance information is distributed on the web, and the existing BIM(Building Information Modeling) information exchange and linking method using IFC(Industry Foundation Classes) cannot support connection with BIM data and web resources. This study aims to establish the BIM-based port facility data integration system using linked data(LD) technology in order to integrate BIM and heterogeneous data in the port maintenance domain. To this end, the port BIM-based ifcOWL and port facility maintenance ontology were designed, and LD was built for the BIM and maintenance information of Busan New Port 2-1 Pier3, a BIM pilot project. In addition, service prototypes such as search, statistics and SPARQL(SPARQL Protocol and RDF Query Language) endpoint functions were implemented using the issued LD. The LD-based information utilization system is expected to improve the reusability of information by converting the existing closed information system into an open system and BIM and maintenance data as a web resource in a standard format.

Evaluation of P-M Interaction Curve for Circular Concrete-Filled Tube (CFT) Column (원형 콘크리트 충전 강관(CFT) 기둥의 P-M 상관 곡선 평가)

  • Moon, Jiho;Park, Keum-Sung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.355-365
    • /
    • 2014
  • Concrete-filled tubes (CFTs) have been used in civil engineering practices as a column of buildings and a bridge pier. CFTs have several advantages over the conventional reinforced concrete columns, such as rapid construction, enhanced buckling resistance, and inherited confinement effect. However, CFT component have not been widely used in civil engineering practice, since the design provisions among codes significantly vary each other. It leads to conservative design of CFT component. In this study, the design provisions of AISC and EC4 for CFT component were examined, based on the extensive test results conducted by previous researchers and finite element analysis results obtained in this study. Especially, the focus was made on the validation of P-M interaction curves proposed by AISC and EC4. From the results, it was found that the current design codes considerably underestimated the strength of CFT component under general combined axial load and bending. Finally, the modified P-M interaction curve was proposed and successfully verified.