• Title/Summary/Keyword: Piecewise linear function

Search Result 90, Processing Time 0.022 seconds

Bilingual Voice Conversion Using Frequency Warping on Formant Space (포만트 공간에서의 주파수 변환을 이용한 이중 언어 음성 변환 연구)

  • Chae, Yi-Geun;Yun, Young-Sun;Jung, Jin Man;Eun, Seongbae
    • Phonetics and Speech Sciences
    • /
    • v.6 no.4
    • /
    • pp.133-139
    • /
    • 2014
  • This paper describes several approaches to transform a speaker's individuality to another's individuality using frequency warping between bilingual formant frequencies on different language environments. The proposed methods are simple and intuitive voice conversion algorithms that do not use training data between different languages. The approaches find the warping function from source speaker's frequency to target speaker's frequency on formant space. The formant space comprises four representative monophthongs for each language. The warping functions can be represented by piecewise linear equations, inverse matrix. The used features are pure frequency components including magnitudes, phases, and line spectral frequencies (LSF). The experiments show that the LSF-based voice conversion methods give better performance than other methods.

Economic Decision of Specification Limits for a Ham Production Process - An Industrial Case Study -

  • Cha, Young-Joon;Hong, Yeon-Woong;Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.943-949
    • /
    • 2005
  • An economic design of specification limits for production process of ham is considered for a given process mean in a complete inspection plan. Each ham is inspected, and if it meets the specification, it is accepted. The ham less than the lower specification limit are changed another products or at a discounted price, and those greater than the upper specification limit are reworked. A profit model is developed which involves selling price, production cost, rework cost and the cost which is incurred by imperfect quality. Methods for finding the optimal specification limits are derived for the case of piecewise linear loss function with an industrial case study.

  • PDF

Analysis of Rectangular Waveguide E-Plane Filters by the Method of Moments (구형 도파관내 전계면 필터의 모멘트법에 의한 해석)

  • 방재훈;윤소현;이석곤;안병철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.358-364
    • /
    • 2000
  • In this paper, an efficient moment-method technique is proposed for analyzing rectangular waveguide E-plane filters. Techniques are presented for the fast evaluation of Green's function and for the efficient evaluation of integrals arising in the E-plane of the rectangular waveguide. The structure boundary is represented by the piecewise linear segments. Simple pulse-expansion and point-matching technique are used. The entire E-plane filter structure is simulated by the method of moments. Three representative cases of the E-plane filter are analyzed and compared with results by other researchers.

  • PDF

Automatic Registration of High Resolution Satellite Images using Local Properties of Control Points (지역적 CPs 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.221-224
    • /
    • 2010
  • When the image registration methods which were generally used to the low medium resolution satellite images is applied to the high spatial resolution images, some matching errors or limitations might be occurred because of the local distortions in the images. This paper, therefore, proposed the automatic image-to-image registration of high resolution satellite images using local properties of control points to improve the registration result.

  • PDF

A mathematical planning model for vertical integration (수직통합 의사결정을 위한 계량분석모형)

  • 문상원
    • Korean Management Science Review
    • /
    • v.10 no.1
    • /
    • pp.193-205
    • /
    • 1993
  • This paper presents a mathematical model for a class of vertical integration decisions. The problem structure of interest consists of raw material vendors, components suppliers, components processing plants, final product (assembly) plants and external components buyers. Economic feasibility of operating components plants instead of keeping outside suppliers is our major concern. The model also determines assignment of product lines and production volumes to each open plant considering the cost impacts of economies of scale and plant complexity. The problem formulation leads to a concave, mixed integer mathematical program. Given the state of the art of nonlinear programming techniques, it is often not possible to find global optima for reasonably sized such problems. We developed an optimization solution algorithm within the framework of Benders decomposition for the case of a piecewise linear concave cost function. It is shown that our algorithm generates optimal solutions efficiently.

  • PDF

Improved Fusion Method of Detection Features in SAR ATR System (SAR 자동표적인식 시스템에서의 탐지특징 결합 방법 개선 방안)

  • Cha, Min-Jun;Kim, Hyung-Myung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.461-469
    • /
    • 2010
  • In this paper, we have proposed an improved fusion method of detection features which can enhance the detection probability under the given false alarm rate in the prescreening stage of SAR ATR(Synthetic Aperture Radar Automatic Target Recognition) system. Since the detection features have the positive correlation, the detection performance can be improved if the joint probability distribution of detection features is considered in the fusion process. The detection region is designed as a simple piecewise linear function which can be represented by few parameters. The parameters for the detection region can be derived by training the sample SAR images to maximize the detection probability with the given false alarm rate. Simulation result shows that the detection performance of the proposed method is improved for all combinations of detection features.

Optimum Operational Schedule for Cogeneration Systems using the Mixed Integer Programming (혼합정수계획법에 의한 열병합발전설비의 최적운용)

  • 차재상
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.75-82
    • /
    • 2002
  • This paper propose a new mathematical modelling method about optimum operational schedule for cogeneration systems. Proposed algorithm solving the energy product cost function in this paper is very similar to the real model that is, proposed algorithm solve nonlinear type of real model using mixed integer programming based on the piecewise linear function while the conventional algorithms used before could not solve that kind of problems. The effectiveness of the proposed method is ascertained by the simulation results with varius case studies which are similar to real operation circumstances.

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images (KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Chae, Tae-Byeong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.667-675
    • /
    • 2011
  • In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

Optimization of Data Recovery using Non-Linear Equalizer in Cellular Mobile Channel (셀룰라 이동통신 채널에서 비선형 등화기를 이용한 최적의 데이터 복원)

  • Choi, Sang-Ho;Ho, Kwang-Chun;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.1-7
    • /
    • 2001
  • In this paper, we have investigated the CDMA(Code Division Multiple Access) Cellular System with non-linear equalizer in reverse link channel. In general, due to unknown characteristics of channel in the wireless communication, the distribution of the observables cannot be specified by a finite set of parameters; instead, we partitioned the m-dimensional sample space Into a finite number of disjointed regions by using quantiles and a vector quantizer based on training samples. The algorithm proposed is based on a piecewise approximation to regression function based on quantiles and conditional partition moments which are estimated by Robbins Monro Stochastic Approximation (RMSA) algorithm. The resulting equalizers and detectors are robust in the sense that they are insensitive to variations in noise distributions. The main idea is that the robust equalizers and robust partition detectors yield better performance in equiprobably partitioned subspace of observations than the conventional equalizer in unpartitioned observation space under any condition. And also, we apply this idea to the CDMA system and analyze the BER performance.

  • PDF

Variational Formulation for Shape Optimization of Spatial Beam Structures (정식화를 이용한 3차원 구조물의 형상 최적설계)

  • 최주호;김종수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF