• Title/Summary/Keyword: Picosecond Laser

Search Result 75, Processing Time 0.028 seconds

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

Wavelength-Tunable, Passively Mode-Locked Erbium-Doped Fiber Master-Oscillator Incorporating a Semiconductor Saturable Absorber Mirror

  • Vazquez-Zuniga, Luis A.;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.117-129
    • /
    • 2013
  • We briefly review the recent progress in passively mode-locked fiber lasers (PMLFLs) based on semiconductor saturable absorber mirrors (SESAMs) and discuss the detailed characterization of a SESAM-based, passively mode-locked erbium-doped fiber (EDF) laser operating in the 1.5-${\mu}m$ spectral range for various configurations. A simple and compact design of the laser cavity enables the PMLFL to generate either femtosecond or wavelength-tunable picosecond pulses with high stability as the intra-cavity filtering method is altered. All the cavities investigated in our experiments present self-starting, continuous-wave mode-locking with no Q-switching instabilities. The excellent stability of the source eventually enables the wavelength-tunable PMLFL to be used as a master oscillator for a power-amplifier source based on a large-core EDF, generating picosecond pulses of >10-kW peak power and >100-nJ pulse energy.

Fabrication of embedded circuit patterns for Ie substrates using UV laser (UV 레이저 응용 반도체 기판용 임베디드 회로 패턴 가공)

  • Sohn, Hyon-Kee;Shin, Dong-Sig;Choi, Ji-Yeon
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • Semiconductor industry demands decrease in line/space dimensions of IC substrates. Particularly for IC substrates for CPU, line/space dimensions below $10{\mu}m/10{\mu}m$ are expected to be used in production since 2014. Conventional production technologies (SAP, etc.) based on photolithography are widely agreed to be reaching capability limits. To address this limitation, the embedded circuit fabrication technology using laser ablation has been recently developed. In this paper, we used a nanosecond UV laser and a picosecond UV laser to fabricate embedded circuit patterns into a buildup film with $SiO_2$ powders for IC substrate. We conducted SEM and EDS analysis to investigate surface quality of the embedded circuit patterns. Experimental results showed that due to higher recoil pressure, picosecond UV laser ablation of the buildup film generated a better surface roughness.

  • PDF

Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser (펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석)

  • 이성혁;이준식;박승호;최영기
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

Construction and Performance Characterization of Time-correlated Single Photon Counting System having Picosecond Resolution (피코초 분해능의 시간 상관 단광자 계수 장치 구성 및 동작 특성)

  • 이민영;김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.90-99
    • /
    • 1994
  • Picosecond time-correlated single photon counting system and time-resolved luminescence spectrometer were constructed, employing a mode-locked picosecond laser, fast electronics, and microchannel plate tube. It has been shown that the instrument response function critically depends on laser pulse shape, timing jitter and walk of the electronics, and characteristics of detector and amplifier. Correcting time dispersion in the optical system, the best instrument response function obtained appears to be 25 ps, which made it possible to measure the luminescence lifetime with less than 10 ps resolution in the picosecond to microsecond range. range.

  • PDF

Practical application of picosecond laser micro-machining to the direct fabrication of a diffraction grating mold (피코초 레이저를 이용한 회절 격자 금형 개발)

  • Noh Ji-Whan;Lee Jae-Hoon;Sohn Hyon-Kee;Suh Jeong;Shin Dong-Sig
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.487-488
    • /
    • 2006
  • Picosecond (ps) laser micro-machining has emerged as an attractive method of fabricating high-precision microstructures, especially in metals. In this paper, a metallic mold for diffraction gratings is fabricated with a mode-locked 12 Ps $Nd:YVO_4$ laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate line patterns. In order to minimize the line width, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application.

  • PDF

A Study on Sapphire Wafer Scribing Using Picosecond Pulse laser (피코초 펄스 레이저를 이용한 사파이어 웨이퍼 스크라이빙에 관한 연구)

  • Moon, Jae-Won;Kim, To-Hoon
    • Laser Solutions
    • /
    • v.8 no.2
    • /
    • pp.7-12
    • /
    • 2005
  • The material processing of UV nanosecond pulse laser cannot be avoided the material shape change and contamination caused by interaction of base material and laser beam. Nowadays, ultra short pulse laser shorter than nanosecond pulse duration is used to overcome this problem. The advantages of this laser are no heat transfer, no splashing material, no left material to the adjacent material. Because of these characteristics, it is so suitable for micro material processing. The processing of sapphire wafer was done by UV 355nm, green 532nm, IR 1064nm. X-Y motorized stage is installed to investigate the proper laser beam irradiation speed and cycles. Also, laser beam fluence and peak power are calculated.

  • PDF

Picosecond Absorption Kinetic Spectrometer with a Laser and a Streak Camera

  • Jang, Du-Jeon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.172-176
    • /
    • 1990
  • A high resolution picosecond absorption kinetic spectrometer utilizing dye emission and a streak camera is presented and compared with other methods of picosecond transient absorption measurements. Typical transient absorption and bleach recovery kinetics measured with this spectrometer are shown. Single wavelength transient absorption or ground state bleach recovery kinetics are determined on the basis of a single laser shot, so that the samples are relatively free frm decomposition by irradiation. Excellent kinetics may be obtained from the near UV to the near IR and are not subject to interference from luminescence of samples. The sensitivity of this spectrometer is very high and it is reasonably easy and convenient to set up and use.

  • PDF