Browse > Article
http://dx.doi.org/10.3807/JOSK.2013.17.2.117

Wavelength-Tunable, Passively Mode-Locked Erbium-Doped Fiber Master-Oscillator Incorporating a Semiconductor Saturable Absorber Mirror  

Vazquez-Zuniga, Luis A. (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
Jeong, Yoonchan (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
Publication Information
Journal of the Optical Society of Korea / v.17, no.2, 2013 , pp. 117-129 More about this Journal
Abstract
We briefly review the recent progress in passively mode-locked fiber lasers (PMLFLs) based on semiconductor saturable absorber mirrors (SESAMs) and discuss the detailed characterization of a SESAM-based, passively mode-locked erbium-doped fiber (EDF) laser operating in the 1.5-${\mu}m$ spectral range for various configurations. A simple and compact design of the laser cavity enables the PMLFL to generate either femtosecond or wavelength-tunable picosecond pulses with high stability as the intra-cavity filtering method is altered. All the cavities investigated in our experiments present self-starting, continuous-wave mode-locking with no Q-switching instabilities. The excellent stability of the source eventually enables the wavelength-tunable PMLFL to be used as a master oscillator for a power-amplifier source based on a large-core EDF, generating picosecond pulses of >10-kW peak power and >100-nJ pulse energy.
Keywords
Mode-locked lasers; Erbium fiber lasers; Semiconductor saturable absorber mirrors; Picosecond pulses;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, "A passively mode-locked fiber laser at 1.54 $\mu m$ with a fundamental repetition frequency reaching 2 GHz," Opt. Express 15, 13155-13166 (2007).   DOI
2 F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton modelocking with saturable absorbers," IEEE J. Select. Topics Quantum Electron. 2, 540-556 (1996).   DOI   ScienceOn
3 L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spuler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).   DOI
4 L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based ytterbium mode-locked fiber lasers," IEEE J. Select. Topics Quantum Electron. 10, 129-136 (2004).   DOI   ScienceOn
5 B. C. Barnett, L. Rahman, M. N. Islam, Y. C. Chen, P. Bhattacharya, W. Riha, K. V. Reddy, A. T. Howe, K. A. Stair, H. Iwamura, S. R. Friberg, and T. Mukai, "High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber," Opt. Lett. 20, 471-473 (1995).   DOI
6 R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nature Photonics 2, 219-225 (2008).   DOI   ScienceOn
7 M. E. Fermann and I. Hartl, "Ultrafast fiber laser technology," IEEE J. Select. Topics Quantum Electron. 15, 191-206 (2009).   DOI   ScienceOn
8 J. Ye, H. Schnatz, and L. W. Hollberg, "Optical frequency combs: from frequency metrology to optical phase control," IEEE J. Select. Topics Quantum Electron. 9, 1041-1058 (2003).   DOI
9 G. Matthaus, B. Ortac, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, "Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser," Appl. Phys. Lett. 93, 261105-1-261105-3 (2008).   DOI   ScienceOn
10 N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 ${\mu}m$," Opt. Lett. 29, 2846-2848 (2004).   DOI   ScienceOn
11 J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Select. Topics Quantum Electron. 8, 506-520 (2002).   DOI   ScienceOn
12 D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010).   DOI   ScienceOn
13 L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).   DOI
14 K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992).   DOI   ScienceOn
15 M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, "Mode-locking with cross-phase and self-phase modulation," Opt. Lett. 16, 502-504 (1991).   DOI
16 H. A. Haus, E. P. Ippen, and K. Tamura, "Additive-pulse modelocking in fiber lasers," IEEE J. Quantum Electron. 30, 200-208 (1994).   DOI   ScienceOn
17 M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt, and L. Turi, "Additive-pulse-compression mode-locking of a neodymium fiber laser," Opt. Lett. 16, 244-246 (1991).   DOI
18 D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, "320 fs soliton generation with passively mode-locked erbium fiber laser," Electron. Lett. 27, 730-732 (1991).   DOI   ScienceOn
19 U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid state low-loss intracavity saturable absorber for Nd-YLF lasers and antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett. 17, 505-507 (1992).   DOI
20 U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
21 U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. D. Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Select. Topics Quantum Electron. 2, 435-453 (1996).   DOI   ScienceOn
22 J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).   DOI   ScienceOn
23 I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, "A semiconductorbased 10-GHz optical comb source with sub 3-fs shot-noiselimited timing jitter and similar to 500-Hz comb linewidth," IEEE Photon. Technol. Lett. 22, 431-433 (2010).   DOI   ScienceOn
24 F. X. Kärtner, J. A. D. Au, and U. Keller, "Mode-locking with slow and fast saturable absorbers-What's the difference?" IEEE J. Select. Topics Quantum Electron. 4, 159-168 (1998).   DOI   ScienceOn
25 S. M. J. Kelly, K. Smith, K. J. Blow, and N. J. Doran, "Average soliton dynamics of a high-gain erbium fiber laser," Opt. Lett. 16, 1337-1339 (1991).   DOI
26 D. V. D. Linde, "Characterization of the noise in continuously operating modelocked lasers," Appl. Phys. B 39, 201-217 (1986).   DOI   ScienceOn
27 Y. S. Liu, J. G. Zhang, G. F. Chen, W. Zhao, and J. Bai, "Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability," J. Opt. 12, 0955204 (2010).
28 S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, "Tunable modelocked bismuth-doped soliton fibre laser," Electron. Lett. 44, 1456-1458 (2008).   DOI   ScienceOn
29 R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, "190-fs passively mode-locked thulium fiber laser with a low threshold," Opt. Lett. 21, 881-883 (1996).   DOI
30 B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Select. Topics Quantum Electron. 3, 1065-1075 (1997).   DOI   ScienceOn
31 W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, "Passively mode-locked $Er^{3+}$ fiber laser using a semiconductor nonlinear mirror," IEEE Photon. Technol. Lett. 5, 35-37 (1993).   DOI   ScienceOn
32 S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, "Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers," Opt. Lett. 29, 1581-1583 (2004).   DOI   ScienceOn
33 L. A. Vazquez-Zuniga, "Ultrafast high power fiber lasers and their applications," Ph. D. Thesis, University of Southampton (2012).
34 L. A. Vazquez-Zuniga, H. Kim, and Y. Jeong, "Wavelengthtunable, picosecond fiber master-oscillator power amplifier source based on an erbium-doped large-core fiber," Opt. Commun. 294, 255-259 (2013).   DOI   ScienceOn
35 S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Laser mode locking using a saturable absorber incorporating carbon nanotubes," J. Lightwave Technol. 22, 51-56 (2004).   DOI   ScienceOn
36 H. Zhang, D. Y. Tang, L. M. Zhao, and Q. L. Bao, "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene," Opt. Express 17, 17630-17635 (2009).   DOI
37 Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano 4, 803-810 (2010).   DOI   ScienceOn
38 H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, "Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion," Laser Phys. Lett. 7, 591-596 (2010).   DOI   ScienceOn
39 H. A. Haus, "Parameter ranges for CW passive modelocking," IEEE J. Quantum Electron. 12, 169-176 (1976).   DOI
40 BATOP Optoelectronics: http://www.batop.com/.
41 C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).   DOI   ScienceOn
42 O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, "Modelocked ytterbium fiber laser tunable in the 980-1070-nm spectral range," Opt. Lett. 28, 1522-1524 (2003).   DOI   ScienceOn
43 E. A. Desouza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. Digiovanni, "Saturable absorber modelocked polarization-maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).   DOI   ScienceOn
44 M. Guina, N. Xiang, A. Vainionp, O. G. Okhotnikov, T. Sajavaara, and J. Keinonen, "Self-starting stretched-pulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers," Opt. Lett. 26, 1809-1811 (2001).   DOI
45 M. Guina, N. Xiang, and O. G. Okhotnikov, "Stretched-pulse fiber lasers based on semiconductor saturable absorbers," Appl. Phys. B 74, S193-S200 (2002).   DOI   ScienceOn
46 M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, "Femtosecond neodymium-doped fiber laser operating in the 894-909-nm spectral range," IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).   DOI   ScienceOn
47 R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, "Dissipative dispersion-managed soliton 2 $\mu m$ thulium/holmium fiber laser," Opt. Lett. 36, 609-611 (2011).   DOI   ScienceOn
48 M. Jiang, G. Sucha, M. E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, "Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser," Opt. Lett. 24, 1074-1076 (1999).   DOI
49 A. Rutz, V. Liverini, R. Grange, M. Haiml, S. Schon, and U. Keller, "Parameter tunable GaInNAs saturable absorbers for mode locking of solid-state lasers," J. Cryst. Growth 301-302, 570-574 (2007).   DOI   ScienceOn
50 O. G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne, and M. Pessa, "1.5 $\mu m$ monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fiber laser," Opt. Lett. 28, 364-366 (2003).   DOI   ScienceOn