• Title/Summary/Keyword: Phytophtora capsici

Search Result 9, Processing Time 0.052 seconds

Fruit and Vine Rot of Watermelon Caused by Phytophthora capsici (Phytophtora capsici에 의한 수박 역병)

  • 김병수
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.98-99
    • /
    • 1995
  • A disease causing fruit rot and leaf and vine blight on watermelon was found in Euseong in July, 1991 and in Bonghwa, Kyungpook province in August, 1993. Abundant zoosporangia characteristics of Phytophthora capsici were formed on the surface of the infected fruits. The zoosporangia were ovoid to ellipsoid, tapering to the base and with conspicuous papilla. The fungus isolated from the infected fruits was pathogenic on seedlings of watermelon, pumpkin, and pepper. The morphological characteristics and host range agreed with those of P. capsici. The watermelon disease caused by P. capsici was reported long time ago in Japan and America but rot yet in Korea. Thus, the disease on watermelon caused by P. capsici is reported as a new record in Korea.

  • PDF

Antagonism and Structural Identification of Antifungal Compound from Chaetomium cochliodes against Phytopathogenic Fungi

  • Kang, Jae Gon;Kim, Keun Ki;Kang, Kyu Young
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.146-150
    • /
    • 1999
  • As a part of the integrated disease system in greenhouse, an antifungal fungus(AF1) was isolated from greenhouse soil. It exhibited strong inhibitory activites against Pythium ultimum, Phytophtora capsici, Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum based on dual culture on 1/5 strength of potato dextrose agar between antagonistic fungus and several plant pathogens. The antagonistic fungus was identified as Chaetomium cochliodes, based on morphological characteristics; the body of the perithecium bears straight or slightly wavy, unbranched hairs, whilst the apex bears a group of spirally coiled hairs. To investigate antagonistic principles, antifungal compound was extracted and fractionated by different solvent systems. An antifungal compound was isolated as pure crystal from is culture filtrate using organic solvent extraction and column chromatography, followed by preparative thin layer chromatography. The chemical structure of the purified antifungal compound was identified as chaetoglobosin A based on the data obtained form $^1H-NMR$, $^{13}C-NMR$, DEPT 90, 135, $^1H-^1H$ COSY, $^1H-^{13}C$ COSY and EI/MS. $ED_{50}$ values of the chaetoglobosin A against P. ultimum, P. capsici, R. solani, B. cinerea and F. oxysporum were 1.98, 4.01, 4.16, 2.67 and 35.14 ppm, respectively.

  • PDF

Purification and Characteriztion of an Antifungal Antibiotic from Bacillus megaterium KL 39, a Biocontrol Agent of Red-Papper Phytophtora Blight Disease. (고추역병균 Phytophthora capsici를 방제하는 길항균주 Bacillus megaterium KL39의 선발과 길항물질)

  • 정희경;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • For the biological control of Phytophthora blight of red-pepper caused by Phytophthora capsici, an antibiotic-producing plant growth promoting rhizobacteria (PGPR) Bacillus sp. KL 39 was selected from a local soil of Kyongbuk, Korea. The strain KL 39 was identified as Bacillus megaterium by various cultural, biochemical test and API and Microlog system. B. megaterium KL 39 could produce the highest antifungal antibiotic after 40 h of incubation under the optimal medium which was 0.4% fructose, 0.3% yeast extract, and 5 mM KCl at 30 C with initial pH 8.0. The antifungal antibiotic KL 39 was purified by Diaion HP-20 column, silica gel column, Sephadex LH-20 column, and HPLC. Its RF value was confirmed 0.32 by thin-layer chromatography with Ethanol:Ammonia:Water = 8:1:1. The crude antibiotic KL39 was active against a broad range of plant pathogenic fungi, Rhizoctonia solani, Pyricularia oryzae, Monilinia fructicola, Botrytis cinenea, Alteranria kikuchiana, Fusarium oxysporum and Fusarium solani. The purified antifungal antibiotic KL39 had a powerful biocontrol activity against red-pepper phytophthora blight disease with in vivo pot test as well as the strain B. megaterium KL 39.

Effect of Temperature and Nutrition Affecting Oospore Formation of Phytophthora capsici Causing Red Pepper Fruit Rot (고추 역병균(疫病菌) (Phytophthora capsici)의 난포자(卵胞子) 형성(形成)에 미치는 온도(溫度) 및 영양(營養)의 효과(效果))

  • Chung, Bong-Koo;Kang, Me-Jong
    • The Korean Journal of Mycology
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 1990
  • Sexual reproductive structure of Phytophthora capsici in vitro was round shape with thick wall and $24.4\;{\mu}m$ of diameter ranging $20-32.5\;{\mu}m$. Oogonium was $26.7\;{\mu}m$ $(21-37.5\;{\mu}m$) and $6.5-{\times}5.4m$ $(6-8{\times}5-6{\mu}m)$ for antheridium as doughnut shaped. Since mycelial contact of the paired cultures initiated right after inoculation, mycelial expansion phase was followed. Oospore morphogensis could be divided into the four phases for reproducing adult oospores. The optimum temperature for oospore reproduction was $20-24^{\circ}C$, whereas a retard trend for oospore formation was at the temperature above $25^{\circ}C$. Korean squash agar medium showed a higher oospore formation than the existing V-8 agar medium. Red pepper fruit agar medium was next. No oospore was reproduced on the red pepper leaf medium. Diurnal light with $1800{\pm}300$ and $800{\pm}300$ Lux showed rather retardation for oospore formation than dark conditions.

  • PDF

Comparative Molecular Similar Indice Analysis on Fungicidal Activity of N-phenyl-O-phenylthionocarbamate Derivatives against Rice Sheath Blight and Phytophthora Blight (벼잎집무늬마름병균 및 고추역병균에 대한 N-Phenyl-O-phenyl-thionocarbamate 유도체들의 살균활성에 관한 비교분자 유사성 분석)

  • Soung, Min-Gyu;Yoo, Jae-Won;Jang, Seok-Chan;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • Comparative molecular similarity indice analysis (CoMSIA) models on the fungicidal activities of N-phenyl substituents (X) in N-phenyl-O-phenylthionocarbamate derivatives against rice sheath blight (Rhizoctonia solani: RS) and phytophthora blight (Phytophthora capsici: PC) were derived. Also, the characterizations of H-bonds between substrates and ${\beta}-tubulin$ were discussed quantitatively. It was revealed that, from the contour maps of CoMSIA models, the H-bond acceptor field contributed the most highly to fungicidal activity for two fungi in common. It is predicted that the selectivity in the fungicidal activity between two fungi is caused by results from the roles of H-bond donor disfavor functional groups in RS and H-bond acceptor disfavor functional groups in PC when these two groups induced at meta- and para-position on the N-phenyl ring. And also, if the substituents (X) are steric disfavor group, negative charge favor groups are introduced at the metaposition in RS and H-bond acceptor group is introduced at the para-position in PC, the antifungal activity against two fungi will be likely able to be increased.

Selection of the Auxin, Siderophore, and Cellulase-Producing PGPR, Bacillus licheniformis K11 and Its Plant Growth Promoting Mechanisms (Auxin, Siderophore, 및 Cellulase 생산성 다기능 식물생장촉진미생물 Bacillus licheniformis K11의 선발 및 식물생장촉진 효과)

  • Jung, Hee-Kyung;Kim, Jin-Rak;Woo, Sang-Min;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • Auxin-producing antagonistic bacterium K11, which can inhibit Phytophtora capsici, was isolated from a local red-pepper field soil in Gyeong-buk. In order to check for additional PGPR(plant growth promoting rhizobacterium) functions of the strain K11, we confirmed siderophore and cellulase productions by CAS (chrome azurol S) blue agar and CMC plate with congo red, respectively. The strain K11 was identified as Bacillus licheniformis with 98% similarity on 16s rDNA comparison and Biolog analyses. B. licheniformis K11 promoted mung bean adventitious root induction and enhanced root growth of mung bean (160%), pea (150%), and Chinese cabbage (130%), Also, B. licheniformis K11 was able to effectively suppress (63%) P. capsici causing red-pepper blight in the pot in vivo test. Therefore, we could select a triple-functional PGPR which has auxin, siderophore, and cellulase producing ability for effective crops production in organic farming.

Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora Blight on Hot Pepper (점액세균 Myxococcus sp. KYC 1126을 이용한 고추 역병 생물학적 방제 효능)

  • Kim, Sung-Taek;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • Bacteriolytic myxobacteria have been known to secrete various antifungal metabolites against several soilborne phytopathogens including Phytophthora. Among the three isolates of Myxococcus spp., KYC 1126 and KYC 1136 perfectly inhibited the mycelial growth of Phytophtora capsici in vitro. In order to show the biocontrol activity on Phytophthora blight of hot pepper, we tried to find the best way of application of a myxobacterial isolate. Although KYC 1126 fruiting body was easily grown on the colony of Escherichia coli as a nutrient source, it did not control the disease when it was pre-applied in soil. Before the bioassay of a liquid culture filtrate of KYC 1126 was conducted, its antifungal activity was confirmed on the seedlings applying with the mixture of the pathogen's zoospore suspension and KYC 1126 filtrate. On greenhouse experiments with five and four replications, the control value of KYC 1126 on phyllosphere and rhizosphere was 88% and 36%, respectively. Whereas, the control value of dimetnomorph+propineb on phyllosphere was 100% and that of propamorcarb on rhizosphere was 44%. There was a phytotoxicity of the myxobacterial filtrate when seedlings were washed and soaked for 24 hours. Gummy materials were covered with roots. And stem and petiole were constricted, then a whole seedling was eventually blighted.

Characteristic of Microorganism and Effect Analysis of Spent Mushroom Compost after Cultivation of Button Mushroom, Agaricus bisporus (양송이버섯 재배 후 폐상퇴비의 효과 분석 및 분리 미생물의 특성)

  • Lee, Chan-Jung;Yun, Hyung-Sik;Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan;Lee, Soon-Ja
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • This study was carried out to investigate the feasibility for the use of environmental-friendly materials and the effective recycling of spent mushroom compost(SMC) after cultivation of Button Mushroom, Agaricus bisporus. SMC of white button mushroom contained diverse microorganisms including fluorescent Pseudomonas sp., Bacillus sp., Tricoderma sp. and Actinomycetes. These isolates showed the extensive antifungal spectrum against plant pathogen. Among of the isolates, fungal pathogen such as Alternaria brassicicola, Phytophtora melonis, Phytophthora capsici and Colletotichum gloeosporioides strong showed strong antagonistic activity. 45.8% of the isolates were actively colonized on the pepper root and 5.8% showed rhizosphere competent of >$5{\times}10^2cfu\;root^{-1}$. The plant growth promotion ability of the collected isolates were tested in pot experiments using red pepper seedling. Among them, 62.7% showed pepper growth promoting ability and growth of pepper root showed superior to the control. The germination of pepper treated with aqueous extracts of non-harvest SMC completely inhibited at concentration of more than 33%. The sterilization of SMC resulted in higher inhibition of germination and early growth of pepper. These results suggest that spent mushroom compost(SMC) of Button Mushroom may have adequately the feasibility for the use with environmental-friendly materials.

Biocontrol of pepper diseases by Lysobacter enzymogenes LE429 and Neem Oil (Lysobacter enzymogenes LE429와 Neem oil을 이용한 고추 병해의 생물학적 방제)

  • Han, Thazin;Cho, Min-Young;Lee, Yong-Seong;Park, Yun-Seok;Park, Ro-Dong;Nam, Yi;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.490-497
    • /
    • 2010
  • A chitinolytic bacterium having a strong antagonistic activity against various pathogens including Phytophtora capsici was isolated from rhizosphere soil, and identified as Lysobacter enzymogenes (named as LE429) based on 16S rRNA gene sequence analysis. This strain produced a number of substances such as chitinase, ${\beta}-1$, 3-glucanase, lipase, protease, gelatinase and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, sephadex LH-20 column chromatography and HPLC. The purified compound was identified as phenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. In field experiment, pepper plants were treated by the strain LE429 culture (CB), neem oil solution (NO), combination (CB+NO) or control (CON). Plant height and number of branches, flowers and pods of pepper plant in CB treatment were generally highest, and followed by CB+NO, CON and NO. The fungal pathogens were strongly inhibited, while several insect pests were discovered in CB treatment. Any insect pests were not found, while all fungal pathogens tested were not suppressed in NO treatment. However, in CB+NO treatment, non incidence of fungal pathogens and insect pests were found. The strain LE429 producing secondary metabolites with neem oil should be a potential agent to control fungal diseases and insect pests.