Characteristic of Microorganism and Effect Analysis of Spent Mushroom Compost after Cultivation of Button Mushroom, Agaricus bisporus

양송이버섯 재배 후 폐상퇴비의 효과 분석 및 분리 미생물의 특성

  • Lee, Chan-Jung (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yun, Hyung-Sik (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cheong, Jong-Chun (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Jhune, Chang-Sung (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Seung-Hwan (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Soon-Ja (Buyeo-gun Agaricultural Technolgy Center)
  • 이찬중 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 윤형식 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 정종천 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 전창성 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 김승환 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 이순자 (부여군농업기술센터)
  • Received : 2009.03.06
  • Accepted : 2009.03.24
  • Published : 2009.04.30

Abstract

This study was carried out to investigate the feasibility for the use of environmental-friendly materials and the effective recycling of spent mushroom compost(SMC) after cultivation of Button Mushroom, Agaricus bisporus. SMC of white button mushroom contained diverse microorganisms including fluorescent Pseudomonas sp., Bacillus sp., Tricoderma sp. and Actinomycetes. These isolates showed the extensive antifungal spectrum against plant pathogen. Among of the isolates, fungal pathogen such as Alternaria brassicicola, Phytophtora melonis, Phytophthora capsici and Colletotichum gloeosporioides strong showed strong antagonistic activity. 45.8% of the isolates were actively colonized on the pepper root and 5.8% showed rhizosphere competent of >$5{\times}10^2cfu\;root^{-1}$. The plant growth promotion ability of the collected isolates were tested in pot experiments using red pepper seedling. Among them, 62.7% showed pepper growth promoting ability and growth of pepper root showed superior to the control. The germination of pepper treated with aqueous extracts of non-harvest SMC completely inhibited at concentration of more than 33%. The sterilization of SMC resulted in higher inhibition of germination and early growth of pepper. These results suggest that spent mushroom compost(SMC) of Button Mushroom may have adequately the feasibility for the use with environmental-friendly materials.

양송이버섯 재배 후 폐상퇴비의 효율적인 재활용과 친환경 자재로서의 이용가능성을 검토하기 위해 작물과 식물병원균에 미치는 영향을 미생물학적인 관점에서 조사하였다. 폐상시기별로 폐상퇴비내 미생물상은 농가마다 차이는 있었지만 형광성 Pseudomonas속, 내열성 세균, 방선균 등 다양한 미생물이 분포하였고, 특히 버섯에는 병원균으로 작용하지만 식물병원균에는 길항균으로 사용되고 있는 Trichoderma 속이 많이 분포하고 있었다. 폐상퇴비에서 분리한 미생물의 여러가지 채소병원균에 대한 항균력을 조사한 결과 식물병원균에 대하여 광범위한 항균 스펙트럼을 나타내었다. 농가마다 채취한 폐상퇴비 중에 항균력을 가지는 미생물의 분포는 달랐지만 분리균의 상당수가 검은무늬병(Alternaria brassicicola), 역병(Phytophthora melonis, Phytophthora capsici), 탄저병(Colletotrichum gloeosporioides) 등에는 강한 항균력을 보였다. 또한 분리 미생물 중 45.8%가 고추 근권에 정착하는 능력을 보였고, 이들 중 5.8%는 $5{\times}10^2cfu\;root^{-1}$ 이상 정착 능력을 보였다. 미생물처리시 균주의 62.7%가 고추 생장을 촉진시켰고, 뿌리 또한 무처리에 비해 생장이 왕성하였다. 폐상퇴비 추출물의 고추 종자 발아 및 생육정도를 조사한 결과 양송이버섯을 정상적으로 수확하고 폐상한 퇴비는 고추의 발아에 전혀 지장이 없었지만 버섯을 거의 수확하지 못한 폐상퇴비의 경우 고추의 발아에 심각한 문제가 발생하였고, 포트시험 결과도 버섯을 거의 수확하지 못한 폐상퇴비를 처리한 경우 고추의 발아 및 생육이 전혀 이루어지지 않았다. 폐상퇴비를 멸균 및 비멸균 조건으로 실험한 결과 폐상시기에 관계없이 멸균시료에 비해 비멸균 시료에서 고추의 생육이 왕성하였다.

Keywords

References

  1. Baker, K.F., and R.J. Cook.1982. Examples of biological control : In biological control of plant pathogens. ed. Baker. K.F. and Cook, R.F., The Amer. Phytopathol. Soc. St. Paul. Mn. 61-106
  2. Baker, R., and F.M. Scher. 1987. Enhancing the activity of biological control agent. p1-18. in: Innovative approaches to plant disease control. 1. chet. ed. Jhon Wiley and Sor. New York. Tronto. Singapore
  3. Baker, M., B. knoop, S. Quiring, A. Beard, B.Lesikar, J.Sweeten, and R. Burns. 2003. Composting guide index. Prepared by the Texas Agricultural Extension Service Solid and Hazardous Waste Management Initiative Team. Chap. I. The Decomposition process. http://aggie-horticulture. tamu. edu/ extention/compost/ compost. html
  4. Buckerfield, J.C., and K.A. Webster. 2001. Responses to mulch continue: results from five years of field-trials. The Australian Grapegrower and Winemaker, 453:71-78
  5. Buckerfield, J.C., and K.A. Webster. 2002. Organic matter management in vineyards: mulches for soil maintenance. The Australian and New Zealand Grapegrower and Winemaker, 461:26-30
  6. Burr, T.J,. M.N. Schroth, and T. Suslow. 1978. Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and Pseudomonas putida. Phytopathol. 68:1377-1383 https://doi.org/10.1094/Phyto-68-1377
  7. Chang, K.W., I.B. Lee, and J.B. Lim. 1995. Changes of Physico - chemical Properties during the Composting of Korean Food Waste. Kor. Org. Resource Recycling Association. 3:3-11
  8. Chang, K.W., I.B. Lee, P.J. Kim, and K.H. Min. 1995. Evaluation of the Stability of Compost Made from Food Wastes by the Fermenting Tank. Korean Organic Resource Recycling Association 3:35-42
  9. Chang, K.W., I.B. Lee, and J.S. Lim. 1995. Changes of physicochemical properties during the composting of Korean Food Waste. Korean Organic Resource Recycling Association 3:3-11
  10. Cheong, J.C., C.S. Jhune, S.H. Kim, K.Y. Jang, J.S. Park, J.C. Na, and M.H. Chun. 2006. Effect of the adding of Flammulina velutipes cultivation media wastes into chicken feed on the meat quality and production cost of broiler. J. Korean Mycolo. 34:2933 https://doi.org/10.4489/KJM.2006.34.1.029
  11. Cook, J.R,. D.M. Weller, and L.S. Thomashow. 1987. Enhancement of root health and plant growth by rhizobacteria. p125-134. in: Molecular strategies for crop protection. Alan Liss Ins
  12. Fermor, T.R., Randle, P.E., and J.E. Smith. 1985. Compost as a substrate and its preparation. Pp. 81-109. In: The biology and technology of the cultivated mushroom. Eds. Spencer, D. M. and Wood, D. A. John Wiley & Sons Inc.UK
  13. Finstein, M. S., and M. L. Morris. 1975. Microbiology of municipal solid waste composting. Adv. Appl. Microbiol. 19:113-151 https://doi.org/10.1016/S0065-2164(08)70427-1
  14. Hoitink, H.A.J., and P.C .Fahy. 1986. Basis for the control of soilborne plant pathogens with composts. Ann. Rev. Phytopathol. 24:93-114 https://doi.org/10.1146/annurev.py.24.090186.000521
  15. Inbar, Y., Y. Hader, and Y. Chen. 1993. Recycling of cattle manure : The composting process and characterization of maturity. J. Environ Qual. 22:857-863 https://doi.org/10.2134/jeq1993.224857x
  16. James, N. 1958. Soil extract in soil microbiology. Can. J. Microbiol. 4:363-370 https://doi.org/10.1139/m58-038
  17. Johnson, J. L. 1994. Similarity analysis of rRNAs. p.683-700 In P. Gerhard, R. G. E. Murray, W. A. Wood, and N. R. Krirg (ed.) Methods for general and molecular bacteriology. American Society for Microbiology. Washington DC, USA
  18. Kate, K., and K. Itho. 1983. New selective media for Pseudomonas strains producing fluorescent pigment. Soil Sci. Plant Nitr. 29:525- 532 https://doi.org/10.1080/00380768.1983.10434655
  19. Kim, I.G., and K.S. Whang. 2002. The observation and a quantitative evaluation of viable but non-culturable bacteria in potable groundwater using epifluorescence microscopy. The Korean. Journal of Microbiology. 38:180-185
  20. Kim, F.J., Chang, K.W., and G.H. Min. 1995. Evaluation of the stability of compost made from food wastes by the fermenting tank. Korean Organic Resource Recycling Association. 3:35-42
  21. Kleeberger. A., H. Castorph., and W. Klingmuller. 1983. The rhiosphere microflora of wheat and barley with special regard to the gram negative bacteria. Arch. Microbiol. 136:306-311 https://doi.org/10.1007/BF00425222
  22. Kuster, E., and S.T. Williams. 1966. Selection of media for isolation of streptomycetes. Nature(London) 202:928-929 https://doi.org/10.1038/202928a0
  23. Leander, F.J., and A.C. Elroy. 1972. Methods for research on the ecology of soil-borne plant pathogens. Burgess Publishing Company. p. 139-166
  24. Martin, J.P. 1950. Use of acid. rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69:215-232. MFAFF, 2006. Actual yield of industrial product https://doi.org/10.1097/00010694-195003000-00006
  25. Moon, B.J., H.S. Chung, and C.T. Cho. 1988. Studies on antagonism of Trichoderma species to Fusarium oxysporum f. sp. fragariae. I. Isolatio, identification and antagonistic properties of Trichoderma species, Korean J. Plant Pathol. 4:111-123
  26. Okuda, T., T. Fujiwara, and M. Fuwara. 1982. Correlation between species of Trichoderma and production patterns of isonitrile antibiotics. Agric. Biol. Chem. 45:1811-1822
  27. Park, C.S., Y.R. Chung, H.G. Kim, and B.K. Hwang. 1998. Development of ecologically compatible biopesticide for controlling plant disease under high quality crop production system. MFAFF. 1-229
  28. Phae, C.G., S. Masayuki, S. Makoto, and K. Hiroshi. 1990. Characteristic of Bacillus subtilis isolated from composts suppressing phytopathogenic microorganisms. Soil Sci. Plant nutr. 36:575-586 https://doi.org/10.1080/00380768.1990.10416794
  29. Sandhu, D.K, and SM. S.idhu. 1980. The fungal succession on decomposing sugar cane bagasse. Trans. Br. Mycol. Soc. 75:281- 286 https://doi.org/10.1016/S0007-1536(80)80090-8
  30. Williams, J., J.M. Clarkson, P.R. Mills, and R.M. Cooper. 2003. A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost. Appled and Environmental Microbiology. 69:4190-4191 https://doi.org/10.1128/AEM.69.7.4190-4191.2003