• Title/Summary/Keyword: Physiological Sensor

Search Result 127, Processing Time 0.028 seconds

Thermal Packaging for Firefighters' Personal Protective Elctronic Equipments (소방대원 개인보호용 전자장비 패키징 기술개발)

  • Park, Woo-Tae;Jeon, Jiwon;Choi, Han Tak;Woo, Hee Kwon;Woo, Deokha;Lee, Sangyoup
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.319-325
    • /
    • 2015
  • While the conventional personal protective equipments (PPEs) covers a variety of devices and garments such as respirators, turnout gear, gloves, blankets and gas masks, several electronic devices such as personal alert safety system (PASS) and heads-up displays in the facepiece have become a part of firefighters personal protective equipments through past several years. Furthermore, more advanced electronic sensors including location traking sensor, thermal imaging caerma, toxic gas detectors, and even physiological monitoring sensors are being integrated into ensemble elements for better protection of firefighters from fire sites. Despite any electronic equipment placed on the firefighter must withstand environmental extremes and continue to properly function under any thermal conditions that firefighters routinely face, there are no specific criteria for these electronics to define functionability of these devices under given thermal conditions. Although manufacturers provide the specifications and performance guidelines for their products, their operation guidelines hardly match the real thermal conditions. Present study overviews firefighter's fatalities and thermal conditions that firefighters and their equipments face. Lastly, thermal packaging methods that we have developed and tested are introduced.

Relationship between atrial pressures and the interventricular pressure in the moving actuator type total artificial heart (심실간 공간 압력을 이용한 이동작동기형 완전이식 인공심장에서의 좌, 우심방압 추정)

  • Jo, Y.H.;Choi, W.W.;Park, S.K.;Choi, J.S.;Lee, J.J.;Om, K.S.;Kim, H.C.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.88-90
    • /
    • 1996
  • The right and left atrial pressures are important parameters in automatic control of a total artificial heart (TAH) within normal physiological ranges. Our TAH is composed of a moving actuator, right and left ventricles and the interventricular space enclosed by a semi-rigid housing. During operation of the TAH, the jnterventpicular space's volume is changed dynamically by the difference between the ejection volume of one ventricle and the inflow volume of the other. Therefore, the changes in pressure of the interventricular space is related to both atrial pressures. We measured the interventricular pressure (IVP) waveform using a pressure sensor and attempted to indirectly estimate the changes of atrial pressures. This method has an advantage that the sensor does not contact the blood directly. Furthermore, the IVP waveforms have its zero baseline in each pump cycle, thus the pressure measurements are free from the transducer drift problems by measuring the peak pressure from these baseline values. From the In vitro experiments, we found that the IVP waveform contained several useful parameters such as negative peak, dP/dT on the initial break, the area enclosed by the profile in each stroke, which are associated with atrial pressures and the filling conditions of the ventricles. The measured atrial pressures were linearly related to the negative peak of the interventricular pressure.

  • PDF

Reliable Measurement and Analysis System for Ubiquitous Healthcare (고신뢰 유비쿼터스 헬스케어 데이터 측정 및 분석 시스템)

  • Jung, Sang-Joong;Seo, Yong-Su;Kim, Jong-Jin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.293-297
    • /
    • 2009
  • This paper describes a real-time reliable measurement and analysis system for ubiquitous healthcare based on IEEE802.15.4 standard. In order to obtain and monitor physiological body signals continuously, wearable pulse oximeter is designed in wrist that could used to measure oxygen saturation of a patient unobtrusively. The measured data was transferred to a central PC or server by using wireless sensor nodes via a wireless sensor network for storage and analysis purposes. LabVIEW server program was designed to monitor and process the measured photoplethysmogram(PPG) to accelerated plethysmogram(APG) by appling second order derivatives in server PC. These experimental results demonstrate that APG can precisely describe the features of an individual's PPG and be used as estimation of vascular elasticity for blood circulation.

  • PDF

Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor (형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징)

  • Jang, Yoon-Kwan;Suh, Jung-Soo;Suk, Myungeun;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.366-372
    • /
    • 2021
  • Cadherin-Catenin complex is thought to play an essential role in the transmission of force at adherens junction. Due to the lack of proper tools to visualize and detect mechanical force signals, the underlying mechanism by which the cadherin-catenin complex regulates force transmission at intercellular junctions remains elusive. In this study, we visualize cadherin-mediated force transmission using an engineered α-Catenin sensor based on fluorescence resonance energy transfer. Our results reveal that α-catenin is a key force transducer in cadherin-mediated mechanotransduction at cell-cell junctions. Thus, our finding will provide important insights for studying the effects of chemical and physical signals on cell-cell communication and the relationship between physiological and pathological phenomena.

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.

Physiological Responses of Warm-Season Turfgrasses under Deficit Irrigation (소량관수로 인한 난지형 잔디의 생리적 반응)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.9-22
    • /
    • 2009
  • Due to increasing concerns over issues with both water quantity and quality for turfgrass use, research was conducted to determine the response of five warm-season turfgrasses to deficit irrigation and to gain a better understanding of relative drought tolerance. St. Augustinegrass(Stenotaphrum secundatum [Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore Paspalum(Paspalum vaginatumSwartz.), 'Empire' zoysiagrass(Zoysia japonica Steud.), and 'Pensacola' bahiagrass(Paspalum notatum Flugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at100%, 80%, 60%, or 40% of evapotranspiration(ET). Evaluations included: a) shoot quality, leaf rolling, leaf firing; b) leaf relative water content(RWC), soil moisture content, chlorophyll content index(CCI), canopy photosynthesis(PS); c) multispectral reflectance(MSR); d) root distribution; and e) water use efficiency. Grasses irrigated at 100% and 80% of ET had no differences in visual quality, leaf rolling, leaf firing, RWC, CCI, and PS. Grasses irrigated at 60% of ET had higher values in physiological aspects than grasses irrigated at 40% of ET. 'Sealsle 1' and 'Palmetto' had a deeper root system than 'Empire' and 'Pensacola', while 'Floratam' had the least amount of root mass. Photosynthesis was positively correlated with visual assessments such as turf quality, leaf rolling, leaf firing, and sensor-based measurements such as CCI, soil moisture, and MSR. Reducing the amount of applied water by 20% did not reduce turfgrass quality and maintained acceptable physiological functioning.

Inferring Pedestrian Level of Service for Pathways through Electrodermal Activity Monitoring

  • Lee, Heejung;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1247-1248
    • /
    • 2022
  • Due to rapid urbanization and population growth, it has become crucial to analyze the various volumes and characteristics of pedestrian pathways to understand the capacity and level of service (LOS) for pathways to promote a better walking environment. Different indicators have been developed to measure pedestrian volume. The pedestrian level of service (PLOS), tailored to analyze pedestrian pathways based on the concept of the LOS in transportation in the Highway Capacity Manual, has been widely used. PLOS is a measurement concept used to assess the quality of pedestrian facilities, from grade A (best condition) to grade F (worst condition), based on the flow rate, average speed, occupied space, and other parameters. Since the original PLOS approach has been criticized for producing idealistic results, several modified versions of PLOS have also been developed. One of these modified versions is perceived PLOS, which measures the LOS for pathways by considering pedestrians' awareness levels. However, this method relies on survey-based measurements, making it difficult to continuously deploy the technique to all the pathways. To measure PLOS more quantitatively and continuously, researchers have adopted computer vision technologies to automatically assess pedestrian flows and PLOS from CCTV videos. However, there are drawbacks even with this method because CCTVs cannot be installed everywhere, e.g., in alleyways. Recently, a technique to monitor bio-signals, such as electrodermal activity (EDA), through wearable sensors that can measure physiological responses to external stimuli (e.g., when another pedestrian passes), has gained popularity. It has the potential to continuously measure perceived PLOS. In their previous experiment, the authors of this study found that there were many significant EDA responses in crowded places when other pedestrians acting as external stimuli passed by. Therefore, we hypothesized that the EDA responses would be significantly higher in places where relatively more dynamic objects pass, i.e., in crowded areas with low PLOS levels (e.g., level F). To this end, the authors conducted an experiment to confirm the validity of EDA in inferring the perceived PLOS. The EDA of the subjects was measured and analyzed while watching both the real-world and virtually created videos with different pedestrian volumes in a laboratory environment. The results showed the possibility of inferring the amount of pedestrian volume on the pathways by measuring the physiological reactions of pedestrians. Through further validation, the research outcome is expected to be used for EDA-based continuous measurement of perceived PLOS at the alley level, which will facilitate modifying the existing walking environments, e.g., constructing pathways with appropriate effective width based on pedestrian volume. Future research will examine the validity of the integrated use of EDA and acceleration signals to increase the accuracy of inferring the perceived PLOS by capturing both physiological and behavioral reactions when walking in a crowded area.

  • PDF

Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

  • Kim, Eunjong;Lee, Dong-Hyun;Won, Seunggun;Ahn, Heekwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.753-758
    • /
    • 2016
  • Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg $O_2/g$ VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

Fabrication of a Parallel Polymer Cantilever to Measure the Contractile Force of Drug-treated Cardiac Cells (약물처리된 심장세포의 세포 수축력 측정을 위한 병렬 폴리머 캔틸레버 제작)

  • Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.100-104
    • /
    • 2020
  • Thus far, several in vivo biosensing platforms have been proposed to measure the mechanical contractility of cultured cardiomyocytes. However, the low sensitivity and screening rate of the developed sensors severely limit their practical applications. In addition, intensive research and development in cardiovascular disease demand a high-throughput drug-screening platform based on biomimetic engineering. To overcome the drawbacks of the current state-of-the-art methods, we propose a high-throughput drug-screening platform based on 16 functional high-sensitivity well plates. The proposed system simulates the physiological accuracy of the heart function in an in vitro environment. We fabricated 64 cantilevers using highly flexible and optically transparent silicone rubber and placed in 16 independent wells. Nanogrooves were imprinted on the surface of the cantilever to promote cell alignment and maturation. The adverse effects of the cardiovascular drugs on the cultured cardiomyocytes were systematically investigated. The 64 cantilevers demonstrated a highly reliable and reproducible mechanical contractility of the drug-treated cardiomyocytes. Real-time high-throughput screening and simultaneous evaluation of the cardiomyocyte mechanical contractility under multiple drugs verified that the proposed system could be used as an efficient drugtoxicity test platform.

The diffusion model on the electrodes with nano-porous surfaces (나노 다공성 표면 전극 위의 확산 모델)

  • Park, Jin-Hyoung;Park, Sae-Jin;Chung, Taek-Dong;Kim, Hee-Chan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1100-1103
    • /
    • 2003
  • One of the good ways to raise the rate of the electrochemical reaction is to broaden the effective surface area of the electrode by developing cylindrical nano-pores on the surfaces. The numerous pores of several nanometer in diameter can be used to enhance a specific faradaic reaction so that the nano-porous structure attract keen attention in terms of implication of new bio/chemical sensors, in which no chemical modification is involved. Amperometric glucose sensor is a representative example that needs the selective enhancement of glucose oxidation over the current due to physiological interferents such as ascorbic acid. The present paper reports how the ascorbic acid and glucose diffuse around the nano-porous surface by simulation study, for which 2D-FDM (Finite Difference Method) was adopted. The results of the simulation not only consist with those from electrochemical experiments but also reveal valuable potential for more advanced application of the nano-porous electrode.

  • PDF