• Title/Summary/Keyword: Physiognomy

Search Result 91, Processing Time 0.022 seconds

Development of Computer Program for the Arrangement of the Forest-road Network to Maximize the Investment Effect on the Forest-road Construction (임도개설(林道開設)에 있어서 투자효과(投資效果)를 최대(最大)로 하는 임도배치(林道配置)프로그램 개발(開發))

  • Park, Sang-Jun;Son, Doo-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.420-430
    • /
    • 2001
  • The object of this study is to develop a computer program for the arrangement of the forest-road network maximizing the investment effect in forest-road construction with factors such as terrains, forest physiognomy, management plan, logging system, cost of forest-road construction, capacity of inputted labour, capacity of timber production and so on. The operating system developed by this study is Korean Windows 95/98 and Microsoft Visual Basic ver. 5.0. User interface was designed as systematic structure, it is presented as a kind of GUI(graphic user interface). The developed program has result of the most suitable forest-road arrangement, has suitable forest-road density calculated with cost of logging, cost of forest-road construction, diversion ratio of forest-road, cost of walking in forest. And the most suitable forest-road arrangement was designed for forest-road arrangement network which maximized investment effect through minimizing the sum of cost of logging and cost of forest-road construction. Input data were divided into map data and control data. Digital terrain model, division of forest-road layout plan, division of forest function and the existing road network are obtained from map data. on the other hand, cost of logging related terrain division, diversion ratio of forest-road and working road, cost of forest-road construction, cost of walking, cost of labor, walking speed, capacity of inputted labor, capacity of timber production and total distance of forest-road are inputted from control data. And map data was designed to be inputted by mesh method for common matrix. This program can be used to construct a new forest-road or vice forest-road which compensate already existing forest-road for the functional forestry.

  • PDF

A Study on a Quantitative Method in Estimating Forest Effects for Streamflow Regulation (II) - Mainly Dealing with Application of Coefficient for Slope Roughness - (삼림이수기능(森林理水機能)의 정량적(定量的) 평가방법(平價方法)에 관한 연구(硏究)(II) - 조도계수(粗度係數)의 응용(應用)을 중심(中心)으로 -)

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.337-345
    • /
    • 1992
  • In this research, a kinematic wave model was applied for the runoff analysis, Regulation of streamflow was estimated by the calibration of roughness coefficient as a parameter. The data analyzed were obtained from Ananomiya and Shirasaka experimental basins at Tokyo University Forest in Aichi. Estimation methods and characteristics of roughness coefficient as a evaluation method of hydrological function of forest are summarized as follows ; 1. Roughness coefficient($N_s$) indicates the resistance of hillslope to the flowing water of surface runoff. There exists an hypothesis that resistance of hillslope to flowing water increase with the growth forest and development of the $A_o$ layer. 2. Roughness coefficient($N_s$) was estimated by the parameter when the stream direct runoff was calculated by using the kinematic wave. 3. Secular change of '$N_s$' in ananomiya has a curve which has an upper limit and increases exponentially near the limit. The curve quickly increased from 1935 to 1945 when results of afforestation for erosion control were thought to be effective. On the other hand, slight increase of '$N_s$' in Shirasaka indicates that there was not such a big change in the surface of soil layer. 4. The increase of '$N_s$' was related with decrease of direct runoff and increase of base flow. It was recognized that the rate of direct runoff decreased with the improvement of forest physiognomy and the rate of base flow was increased. But absolute value of water runoff per one storm decreased in chronological order.

  • PDF

Characteristics of Quercus mongolica Dominant Community on the Ridge of the Nakdong-Jeongmaek -Focusing on the Baekbyeongsan, Chilbosan, Baegamsan, Unjusan, Goheonsan, Gudeoksan- (낙동정맥 마루금 일대의 신갈나무우점군락 특성 -백병산, 칠보산, 백암산, 운주산, 고헌산, 구덕산을 중심으로-)

  • Kang, Hyun-Mi;Kim, Dong-Hyo;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.318-333
    • /
    • 2020
  • The Nakdong-Jeongmaek extends north and south from Taebaek-si of Gangwon-do to Busan metropolitan city and includes a wide range of forest zone from temperate to the warm-temperature forest. The purpose of this study was to analyze the vegetation structural characteristics of the Quercus mongolica-dominant community, which was distributed in the largest area in Baekdudaegan and Jeongmaek, by region and communities in the Nakdong-Jeongmaek. For the study, a representative 6 sites were selected: Baekbyeongsan, Chilbosan, Baegamsan, Unjusan, Goheonsan, and Gudeoksan. The survey of the 6 sites showed that the canopy had over 85% the importance percentage of Quercus mongolica. In the understory, Rhododendron schlippenbachii, Fraxinus sieboldiana, etc. were located and Fraxinus sieboldiana, Lespedeza maximowiczii, Tripterygium regelii and so on were found in the shrub. The importance percentage of 4 communities of Quercus mongolica, which were separated by TWINSPAN, in the canopy was more than 80%, and the dominant species in the understory and shrub were the same. Currently, Quercus mongolica has been identified as the understory following the canopy, and the Quercus mongolica-dominant community is expected to continue unless there are external factors. In the temperate forest regions in Korea, Quercus spp.and Carpinus laxiflora form the major forest physiognomy in the natural forest state. Based on these characteristics, the Quercus mongolica-dominant community on the ridge of the Nakdong-Jeongmaek is considered to have characteristics of temperate forests in Korea. The Quercus mongolica community is a representative cool-temperate deciduous forest and known as a climatic climax in the upper section of the mountains in the Korean Peninsula. Trees of the same species should be distributed at each layer to maintain the dominant species' status in the canopy's climax forest. Therefore, the Quercus mongolica community is considered the climax forest in the ridge of the Nakdong-Jeongmaek.

Forest Community Structure of Mt. Bukhan Area (북한산 지역의 삼림군집구조에 관한 연구)

  • 박인협;이경재;조재창
    • Korean Journal of Environment and Ecology
    • /
    • v.1 no.1
    • /
    • pp.1-23
    • /
    • 1987
  • To investigate the forest structure of Mt. Bukhan. ranging from Seoul to Kyongkido, twenty plots were set up by the vegetation physiognomy and vegetation analysis was carried out. According to the leading dominant tree species in canopy stratum, forest communities were classified into three large groups of natural forest communities, semi-natural forest communities and artificial forest communities, and each of them covered 82.64, 7.03, and 5.71% of Mt. Bukhan area, respectively. Pure or mixed natural forest communities of Pinus densiflora and Quercus mongolica were major forest communities and covered 70.8% of Mt. Bukhan area. The important planted tree species were Robinia pseudoacacia, Pinus rigida, and Alnus birsuta and they were mainly planted at the southern slope and roadside. The degree of human disturbance of vegetation of 8, 7, and 6 area covered 82.64, 0, and 12.74%, respectively. According to forest dimensions, most of forest communities were young aged forests of which mean DBH was 20cm and canopy height below 10m. However, a few mature forest communities of Pinus densiflora or Quercus mongolica were found in the small area. The range of Shannon's species diversity of major natural forest communities, pure or mixed forest communities of Pinus densiflora and Quercus mongolica was 1.085~1.242. According to stand dynamic analysis by DBH class distribution, the present Quercus mongolica communities arid Robinia pseudoacacia communities may last long their present forest structure and most of other communities may be succeeded to Quercus mongolica communities, however, a few communities invaded by Robinia pseudoacacia and Quercus aliena-Quercus acutissima communities may be succeeded to Robinia pseudoacacia communities and Quercus aliena communities, respectively. DCA was the most effective method of this study. DCA ordination were showed that successional trends of tree species seem to be from Pinus densiflora through Quercus serrata. Prunus sargrntii. Sorbus alnifolia to Q. mongolica. Fraxinus mandsburica, F. rhynchophylla in the upper layer and from Zanthoxylum schinifolium, Lespedeza crytobotrya trough Rhus trichocarpa. Rh. verniciflua. Rhododendron mucronulatum. Rh. schlippenbachii to Acer pseudo-sieboldianus. Magnolia sieboldii, Euonymus sieboldianus.

  • PDF

Vegetation Strucure of Hwangjeong Wetland around Geumho River (금호강 황정 습지의 식생 구조)

  • Lee, Pal-Hong;Kim, Cheol-Soo;Kim, Tae-Geun;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.67-80
    • /
    • 2005
  • Vegetation structure of the vascular plants was investigated from April 2003 to August 2003 in Hwangjeong wetland around Geumho River, Yeongcheon-si, Gyeongsangbuk-do, Korea. Actual vegetation of Hwangjeong wetland largely can be classified by the floristic composition and the physiognomy into 12 communities; Ambrosia artemisiifolia var. elatior, Humulus japonicus, Miscanthus sacchariflorus, Phragmites japonica, Zizania latifolia-Miscanthus sacchariflorus, Zizania latifolia-Nymphoides peltata, Miscanthus sacchariflorus-Phragmites japonica, Phragmites communis-Phragmites japonica, Phragmites japonica-Salix gracilistyla, Salix koreensis-Salix glandulosa, Salix nipponica-Salix koreensis, and Phragmites japonica-Zizania latifolia. Among them, the distribution area of the Phragmites japonica community was the largest as 49.46 ha(11.03%). The dominant vegetation type was Phragmites japonica community and Ambrosia artemisiifolia var. elatior community based on the phytosociological method, and Phragmites japonica community was classified into two subcommunities; Nymphoides peltata subcommunity and Salix glandulosa subcommunity. Differential species of Phragmites japonica community were Phragmites japonica, Miscanthus sacchariflorus, Persicaria thunbergii, Oenanthe javanica, Leersia oryzoides var. japonica, and Rorippa indica; differential species of Ambrosia artemisiifolia var. elatior community were Ambrosia artemisiifolia var. elatior, Setaria glauca, Commelina communis, Cyperus orthostachyus, Digitaria sanguinalis, Xanthium strumarium, Erigeron annuus, Erigeron canadensis, Kummerowia striata, Trifolium repens, and Medicago sativa; differential species of Nymphoides peltata subcommunity were Nymphoides peltata, Zizania latifolia, Scirpus tabernaemontani, and Eleocharis mamillata var. cyclocarpa; differential species of Salix glandulosa subcommunity were Salix glandulosa, Salix koreensis, and Salix gracilistyla. It was expected that Hwangjeong wetland is worthy of conservation contributed purifying water pollution, giving habitats of many lifes, and providing beautiful scenes of Geumho River.

  • PDF

Classification System of Wetland Ecosystem and Its Application (습지생태계 분류체계의 검토 및 적용방안 연구)

  • Chun, Seung Hoon;Lee, Byung Hee;Lee, Sang Don;Lee, Yong Tae
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.55-70
    • /
    • 2004
  • The wetland ecosystem is a complex products of various erosion force, accumulation as water flows, hydrogeomorphic units, seasonal changes, the amount of rainfalls, and other essential element. There is no single, correct, ecologically sound definition for wetlands because of the diversity of wetlands and the demarcation between dry and wet environments occurs along a continuum, but wetland plays various ecosystem functions. Despite comprehensive integration through classification and impact factors there is still lacking in systematic management of wetlands. Classification system developed by the USFWS(1979) is hierarchical progresses from systems and subsystems at general levels to classes, subclasses, dominance types, and habitat modifiers. Systems and subsystems are delineated according to major physical attributes such as tidal flushing, ocean-derived salts, and the energy of flowing water or waves. Classes and subclasses describe the type of substrate and habitat or the physiognomy of the vegetation or faunal assemblage. Wetland classes are divided into physical types and biotic types. For the wise management of wetlands in Korea, this study was carried out to examine methodology of USFWS classification system and discuss its application for Korean wetland hydrogeomorphic units already known. Seven wetland types were chosen as study sites in Korea divided into some different types based on USFWS system. Three wetland types belonging to palustrine system showed no difference between Wangdungjae wetland and Mujechi wetland, but Youngnup of Mt. Daeam was different from the former two types at the level of dominant types. This fact means that setting of classification system for management of wetland is needed. Although we may never know much about the wetland resources that have been lost, there are opportunities to conserve the riches that remain. Extensive inventory of all wetland types and documentation of their ecosystem functions are vital. Unique and vulnerable examples in particular need to be identified and protected. Furthermore, a framework with which to demonstrate wetland characteristics and relationships is needed that is sufficiently detailed to achieve the identification of the integrity and salient features of an enormous range of wetland types.

  • PDF

A Study on the Forest Vegetation of Deogyusan National Park (덕유산 국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • From March 2012 to January 2013, this study was conducted as a part of the project for making a precise electronic ecological zoning map of vegetation on a highly reduced scale of 1 to 5,000 with a view to improving management efficiency of national parks and enlarging the availability of the data produced from the basic research monitoring the resources of national parks. For the research accuracy and rapidity, a vegetation map was specially created for the on-the-site-vegetation research. To make the map more meticulous, we categorized the vegetation database into five groups: broadleaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. After comparing the results of the data built for the vegetation research and the actual research findings, it was made clear that vegetation of both categories was almost the same in case of broad-leaved forest with 72.20% and 78.45% respectively, and also equivalent in other groups like, for example, coniferous forest (16.70%, 13.41%), mixed forest (9.50%, 7.49%) and rock vegetation (0.60%, 0.15%). According to the precise vegetation map produced from the research, the deciduous broad-leaved forest was the most widely prevalent type in the correlated hierarchical classification of vegetation, occupying 65.78% of the overall vegetation. It was followed by mountain valley forest (15.17%), coniferous forest (10.90%), and plantation forest (7.00%) in order. It is particularly noteworthy that Mt. Deogyusan national park has retained a very stable and versatile forest vegetation in the outstanding state since approximately 20% of the mountain turns out to belong to the I grade vegetation conservation classification which contains climax forests, unique vegetation, subalpine vegetation, matured stands which are older than 50 years and etc.

The Comparative Studies on the Distribution and Species Composition of Forest Community in Korea and Japan around the East Sea (한국과 일본의 동해안 지역에 분포하는 산림군락의 종조성과 분포에 관한 비교 연구)

  • Yun, Jong-Hak;Hukusima, Tukasa;Kim, Moon-Hong;Yoshikawa, Masato
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.3
    • /
    • pp.327-357
    • /
    • 2011
  • This study compared the species composition and distribution of the forest communities between Korea and Japan using vegetation releve database. The study included the eastern and southern Korean Peninsula, Is. Jeju, Is. Ulreung, northern Kyushu, central part of Japan and Is. Tsushima and divided in fourteen region with major mountain as the center. Seventy-nine forest communities were classified by tabular comparison with the total of 1844 releves. In the composition table, fifty-four groups of plant species were listed. Some grew in one area exclusively, while others were present in multiple locations. This study showed the similarity and heterogeneity of species composition among study areas. We grouped fourteen types showing similar physiognomy for forest communities. The physiognomical features of the vertical vegetation zones in the study area were similar, however, dominant species and species composition were different between the regions. In the lowland zone, Castanopsis-Type dominated by Castanopsis cuspidata var. sieboldii or Castanopsis cuspidata were distributed in the study area except for northern part of the Korean Peninsula and Is. Ulreung. Additionally, Persea thunbergii-Type was distributed widely in the lowest part of the study area, however, it showed the simplification of the species composition in the Korean Peninsula and Is. Ulreung. In the hilly zone, evergreen forest composed by Abies firma-Type distributed in northern Kyushuand Is. Tsushima, but it was absent in the other study region. The difference in forest community was conspicuous, especially in the montane zone. Deciduous broadleaved forests composed Quercus(D)-Type and Fagus-Type widely distributed in the montane of study area. However, forest community dominated by Quercus mongolica and Fagus multinervis flourished in Korea. On the otherhand, forest community dominated by Quercus mongolica var. grosseserrata, Fagus crenata and F. japonica distributed in Japan. In the sub-alpine zone, evergreen coniferous forest composed Abies-Quercus(D)-Type, Abies koreana-Type, and Pinus pumila-Type were distributed in the Korean Peninsula and Is. Jeju. Forests composed Taxus cuspidata var. nana-Type, Abies mariesii-Type, and Pinus pumila-Type distributed in the central part of Japan. As a result of DCA ordination, evergreen broadleaved forests of the whole study area showed the lower scores along the first axis, while deciduous and coniferous forests showed the higher scores. The forest types of western part of Japan were located the higer scores, forest types of the Korean Peninsula were located the lower scores, and forest types of Is. Jeju located in the middle. Warmth index (WI) and Annual range of temperature in climate factor were highly correlated on the first axis. The first axis reflected the gradient from oceanic climatic to continental one. The higher the altitude and further geographically, the lower the similarity among communities and the peculiarity of community appeared stronger. The historical background reflecting local flora has strongly influenced on development of community.

Vegetation Strucure of Haepyeong Wetland in Nakdong River (낙동강 해평 습지의 식생 구조)

  • Lee, Pal-Hong;Kim, Cheol-Soo;Kim, Tae-Geun;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2005
  • Vegetation structure of the vascular plants was investigated from March 2003 to October 2003 in Haepyeong wetland, Gumi-si, Gyeongsangbuk-do, Korea. Actual vegetation of Haepyeong wetland largely can be classified by floristic composition and physiognomy into 18 communities; Xanthium strumarium-Digitaria sanguinalis, Humulus japonicus, Persicaria perfoliata-Humulus japonicus, Phragmites japonica-Miscanthus sacchariflorus, Persicaria hydropiper-Phragmites communis, Persicaria hydropiper, Phragmites japonica-Persicaria hydropiper, Miscanthus sacchariflorus- Phragmites japonica, Persicaria hydropiper-Phragmites japonica, Miscanthus sacchariflorus-Salix glandulosa, Salix nipponica-Salix glandulosa, Salix nipponica-Salix koreensis, Salix nipponica, Miscanthus sacchariflorus-Salix nipponica, Phalaris arundinacea-Salix nipponica, Salix glandulosa-Salix nipponica, Trapa japonica, and Ceratophyllum demersum-Trapa japonica. Among them, the area of the Salix nipponica-Salix koreensis community was the largest as 122.2ha(9.23%). The dominant vegetation type was Miscanthus sacchariflorus-Persicaria hydropiper community based on phytosociological method, and it was was classified into three subcommunities; Salix glandulosa-Salix nipponica subcommunity, Digitaria sanguinalis subcommunity, and Cyperus amuricus subcommunity. Differential species of Salix glandulosa-Salix nipponica subcommunity were Salix nipponica, S. glandulosa, S. koreensis, Scirpus radicans, Persicaria maackiana, and Achyranthes japonica; differential species of Digitaria sanguinalis subcommunity were D. sanguinalis, Setaria viridis, Ambrosia artemisiifolia var. elatior, and Cyperus orthostachyus; differential species of Xanthium strumarium subcommunity were X. strumarium, Acalypha australis, Erigeron canadensis, Echinochloa crus-galli, and Vicia tetrasperma. Zonation of vascular hydrophytes and hygrophytes was as followers: Salix glandulosa, S. koreensis, S. nipponica were distributed in the region of land which water table is low, and Persicaria maackiana, Persicaria hydropiper, Scirpus radicans were distributed in the understory. And emergent plants such as Phragmites communis and Scirpus karuizawensis, floating-leaved plant such as Trapa japonica, submersed plant such as Ceratophyllum demersum, and free floating plant such as Spirodela polyrhiza formed the zonation from shoreline to water. The specified wild plants designated by the Korean Association for Conservation of Nature, Ministry of Forest, and Ministry of Environment were not distributed in the study area. It was expected that Haepyeong Wetland worthy of conservation contributed purifying water pollution, giving habitats of many lifes, and providing beautiful scenes of the river.

  • PDF

A Study on Vascular Plants, Distribution Status and Management Plans of the Cactus Habitat (No. 429 Natural Monument) in Wolryung-ri, Jeju Island (제주 월령리 선인장군락지(천연기념물 제429호)의 관속식물상, 분포실태, 관리방안에 관한 연구)

  • Lee, Cheol-Ho;Jang, Gye-Hyun;Ryu, Tae-Bok;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • The cactus habitat in Jeju Island has a phytogeographically specific distribution in the East Asian region, and forms a unique landscape as the only native cactus (Opuntia ficus-indica (L.) Mill.) habitat in Korea. However, there has been no detailed investigation on the distribution of cacti in the habitat and no investigation on the diversity of the mixed composition of plants in the habitats and their correlation with the distribution of cactus populations. This study attempted to investigate the diversity of vascular plants in the Wollyeong-ri cactus habitat and record the actual distribution and trends of cactus distribution. In addition to the distribution characteristics of cacti, we also discuss the characteristics of species reflecting the characteristics of the habitat among the mixed population of plant species, as well as the biological and environmental factors that threaten the maintenance of cactus populations or require management for preservation of cacti. Considering the phenological character, we conducted the field surveys for flora identification six times between June 2015 and September 2017. The Engler classification system was used for the arrangement sequence and names of plants, and the Korean Plant Names Index was adopted for the Korean name of the species. The study results showed that the Wolryung-ri cactus habitat in Jeju Island has the characteristic physiognomy of an area dominated by cactus. For the vascular plants, a total of 125 taxa were identified, including 53 families, 104 genera, 109 species, 15 varieties and 1 forma. Endangered plants specified by the Ministry of Environment were not found. Two species, Cyrtomium falcatum and Asplenium incisum, were identified as the ferns, and no gymnosperms were found. In addition, 123 taxa of angiosperms, 91 taxa of dicotyledones and 32 taxa of monocotyledons were identified. The distributions of cacti were confirmed in 289 meshes corresponding to 59.3% of the total 487 meshes in the cactus protected area, which showed various coverage distributions ranging from 5% to 95%. Most of the meshes where no cacti were found are coastal areas with exposed basalt rocks where the soil depth has not developed or extremely restricted due to repeated waves, or areas where artificial facilities, grasslands, and observation paths have been constructed. On the other hand, there were 71 lattice points in 14.5% of the total area where the cactus showed 70% or higher dominance. Cacti are randomly distributed in these areas. They have adapted to the microhabitat environment and are found to be opportunistically distributed along the growable locations. Considering that the reproduction of cacti in the habitat is mostly dependent on parthenogenesis, the present distribution seems to reflect the potentially distributable regions of cacti in the habitat. Based on the results of field surveys, a management plan for conservation and protection of the protected areas has been proposed.