• Title/Summary/Keyword: Physical removal

Search Result 657, Processing Time 0.03 seconds

Adverse Effect of the Methanotroph Methylocystis sp. M6 on the Non-Methylotroph Microbacterium sp. NM2

  • Jeong, So-Yeon;Cho, Kyung-Suk;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1706-1715
    • /
    • 2018
  • Several non-methylotrophic bacteria have been reported to improve the growth and activity of methanotrophs; however, their interactions remain to be elucidated. We investigated the interaction between Methylocystis sp. M6 and Microbacterium sp. NM2. A batch co-culture experiment showed that NM2 markedly increased the biomass and methane removal of M6. qPCR analysis revealed that NM2 enhanced both the growth and methane-monooxygenase gene expression of M6. A fed-batch experiment showed that co-culture was more efficient in removing methane than M6 alone (28.4 vs. $18.8{\mu}mol{\cdot}l^{-1}{\cdot}d^{-1}$), although the biomass levels were similar. A starvation experiment for 21 days showed that M6 population remained stable while NM2 population decreased by 66% in co-culture, but the results were opposite in pure cultures, indicating that M6 may cross-feed growth substrates from NM2. These results indicate that M6 apparently had no negative effect on NM2 when M6 actively proliferated with methane. Interestingly, a batch experiment involving a dialysis membrane indicates that physical proximity between NM2 and M6 is required for such biomass and methane removal enhancement. Collectively, the observed interaction is beneficial to the methanotroph but adversely affects the non-methylotroph; moreover, it requires physical proximity, suggesting a tight association between methanotrophs and non-methylotrophs in natural environments.

A Study on the Application and Design Procedure of Multi-Purpose Wet Detention Ponds for Improving Water Quality - Case Study of NamAk New Town Development Area - (다목적 저류지의 수질개선을 위한 설계과정 및 적용에 관한 연구 - 남악 신도시 개발지를 대상으로 -)

  • Woo, Chang-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The disposal of stormwater is one of the major problems in urban water management. One method of reducing peak runoff rates and other detrimental impacts of stormwater is detention storage. Detention ponds as a water quality control alternatives have been investigated by a number of researchers. Recognizing multiple roles such as flood peak attenuation, pollution removal and aesthetic enhancement, the design and management of detentions ponds deserve more research. The purpose of this research is to establish design criteria wet detention ponds to improve water quality. Water quality in detention pond discharge might be improve with physical, chemical and biological alterations. Physical alteration was focused in this study. There are several methods for estimating the suspended solid control capability of wet detention ponds. Existing models of suspended solids removal are based on sedimentation and gravity settling theory. The pollutant trap efficiency of pond is a function of several interrelating factors. Detention time is the most important factor, because it determine gravity settling quantities of pollutants. Desirable modification of physical factors for improvement of water quality in wet detention ponds are volume ratio, area ratio, length to width ratio, depth, out let location, bottom soil type. In order to apply design procedure in actual site, Namak new town development area was selected.

Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes

  • Sailo, Lalsaimawia;Pachuau, Lalramnghaki;Yang, Jae Kyu;Lee, Seung Mok;Tiwari, Diwakar
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • Remediation of wastewater contaminated with metal(II)-complexed species (Cu(II)-NTA (NTA: nitrilotriacetic acid), Cu(II)-EDTA (EDTA: ethylenediamine tetraacetic acid) and Cd(II)-EDTA is attempted using the potential applicability of ferrate(VI). Kinetics of pollutant degradation is obtained with the removal of ferrate(VI) studied at wide range of pH (8.0-10.0) and the concentration of metal(II)-complexed species (0.3 to 15.0 mmol/L) employing a constant dose of ferrate(VI) i.e., 1.0 mmol/L. Pseudo-first-order and pseudo-second-order rate constants were obtained in the reduction of ferrate(VI) which was then employed to obtain the overall rate constants of the pollutant degradation. The mineralization of NTA and EDTA was obtained with the change in TOC (total organic carbon) values collected by the ferrate(VI) treated pollutant samples. Decrease in pH and molar pollutant concentrations was greatly favored the percent mineralization of NTA or EDTA by the ferrate(VI) treatment. The treated pollutant samples were filtered and subjected for AAS (atomic absorption spectrophotometric) analysis to assess the simultaneous removal of copper and cadmium from aqueous solutions at the studied pH as well at the elevated pH 12.0. Results show that an enhanced removal of cadmium or copper was achieved at pH 12.0. Overall, ferrate(VI) possesses multifunctional application in wastewater treatment as it oxidizes the degradable impurities and removes metallic impurities by coagulation process.

A comparative study on the carbon dioxide removal capability between the processes using physical solvent and membrane process (이산화탄소 제거공정에서 물리 흡수제를 사용한 공정과 멤브레인을 사용한 공정 사이의 비교 연구)

  • Kang, Jinjin;Noh, Jaehyun;Ahn, June Shu;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6590-6596
    • /
    • 2013
  • Carbon dioxide should be removed to increase the productivity of dimethyl ether(DME) from the DME manufacturing process. In this study, carbon dioxide can be removed using a physical absorbent through a solvent absorption method and membrane separation method. After performing the simulation for the carbon dioxide removal process, the energy consumption of the processes was compared. Methanol was used as a physical absorbent for the rectisol process, dimethyl ethers of polyethylene glycol for the Selexol process and N-methyl pyrrolidone for the Purisol process. By performing the simulation for each process, the energy consumption was compared. The Purisol process had the lowest energy consumption, followed in order by the Selexol process, Rectisol process and Membrane process. Therefore, the Purisol process was the most suitable method for the carbon dioxide process in the DME manufacturing process.

A Kinetic Study on the Ammonia Nitrogen Adsorption by Physical Characteristics of Activated Carbon (활성탄 물성에 따른 암모니아성 질소 흡착의 동력학적 연구)

  • Seo, Jeong-beom;Kang, Joon-won;Lee, Ik-soo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.311-316
    • /
    • 2008
  • This study aimed to obtain equilibrium concentration on adsorption removal of ammonia nitrogen by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical characteristics of activated carbon and dynamics of ammonia nitrogen removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. It was noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon was $4.6{\times}10^{-8}$ which is bigger than that of granular activated carbon. The adsorption rate constant on ammonia nitrogen of powered activated carbon with high porosity and low effective diameter was highest as 0.416 hr-1 and the effective pore diffusivity ($D_e$) was lowest as $1.17{\times}10^{-6}cm^2/hr$, and the value of ammonia nitrogen adsorption rate constant of granular activated carbon was $0.149{\sim}0.195hr^{-1}$. It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter and bigger porosity was better and its rate constant was also high. With a little adsorbent dosage of 2 g, there was no difference removal ability of ammonia nitrogen as change of adsorption properties.

A Study on Removal Effect of Residual Pesticide on Adsorbent (흡착제에 의한 잔류농약 제거효과에 관한 연구)

  • An, Jung-hyeok;Kim, Joon-bum;Kwon, Young-du;Jeon, Choong;Park, Kwang-ha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.537-544
    • /
    • 2007
  • This study was carried out to investigate adsorption characteristics of residual pesticides on an adsorbent. $Bauxsol^{TM}$ and mackban-stone as adsorbent were used. Analytical method for residual pesticides was established by GC/NPD and $GC/{\mu}ECD$. Pesticides used in this study were ${\alpha}$-endosulfan, ${\beta}$-endosulfan, pendimethalin and chlorpyrifos-methyl, fenitrothion, and recovery rates were more than 97%. Adsorption rate on an adsorbent was decreased in order of endosulfan, chlorpyrifos-methyl, pendimethalin, fenitrothion. Organochlorine pesticides showed higher removal rate than the other pesticides. $Bauxsol^{TM}$ gave both chemical decomposition and physical adsorption. Mackban-stone gave only physical adsorption on the other hand. The high pH and chloric ions structure of eluted solution have greatly affected at chemical resolution. The removal rate of pesticides was increased due to the physical property of adsorbent, i.e. high porosity. The above adsorbent is to be a candidate to remove residual pesticides in water and pond of links.

Performance of Soil Flushing for Contaminated Soil Using Surfactant (계면활성제를 이용한 오염 토양 세정 성능 평가)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.17-23
    • /
    • 2011
  • In this study, a series of experiments were carried out to remove total petroleum hydrocarbon(TPH) and toluene by soil flushing. In batch experiments, Triton X-100 and SWA 1503 showed TPH removal efficiency of 79.0% and 69.0%, respectively. Although the TPH removal efficiency increased as the surfactant was increased in the concentration range 1-11mmol/L, the optimum concentration was 1mmol/L, considering the ratio of the removal efficiency to the amount of surfactant injected. In column experiment, the optimal velocity was 0.3mL/min. The physical aquifer model(PAM) result revealed that the soil flushing removed as much as 5.5% of the toluene under 3 pore volume(PV) conditions. To improve the soil flushing efficiency, it is necessary to find optimal condition through recirculation or reuse of surfactant.

Effect of Contaminant Source Location on Indoor Air Quality

  • Lee, Hee-Kwan;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.E
    • /
    • pp.1-7
    • /
    • 1998
  • This paper presents an experimental study for understanding the indoor air quality in a room. A model room, which had a ceiling-mounted supply and a sidewall-mounted exhaust, was used to examine the effect of air exchange rate (AER) and contaminant source location (CSL) as a function of the elapsed time. A tracer gas method, using carbon monoxide tracer, gas analyzers, and a data acquisition system, was applied to study the ventilation air distribution and the tracer removal efficiency, so-called pollutant removal efficiency, in the model room. The experiment was composed of two parts; firstly the AER was varied to examine its effect on the ventilation air distribution and the ventilation effectiveness and secondly both AER and CSL were considered to determine their effect on the pollutant removal efficiency. It was found that the ventilation effectiveness in the model was proportional to AER but not linearly. It was also found that changing the CSL can improve the pollutant removal efficiency. In some cases, the efficiency improvement by increasing AER was achieved by simply changing CSL.

  • PDF

Tribology Research Trends in Chemical Mechanical Polishing (CMP) Process (화학기계적 연마(CMP) 공정에서의 트라이볼로지 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.115-122
    • /
    • 2018
  • Chemical mechanical polishing (CMP) is a hybrid processing method in which the surface of a wafer is planarized by chemical and mechanical material removal. Since mechanical material removal in CMP is caused by the rolling or sliding of abrasive particles, interfacial friction during processing greatly influences the CMP results. In this paper, the trend of tribology research on CMP process is discussed. First, various friction force monitoring methods are introduced, and three elements in the CMP tribo-system are defined based on the material removal mechanism of the CMP process. Tribological studies on the CMP process include studies of interfacial friction due to changes in consumables such as slurry and polishing pad, modeling of material removal rate using contact mechanics, and stick-slip friction and scratches. The real area of contact (RCA) between the polishing pad and wafer also has a significant influence on the polishing result in the CMP process, and many researchers have studied RCA control and prediction. Despite the fact that the CMP process is a hybrid process using chemical reactions and mechanical material removal, tribological studies to date have yet to clarify the effects of chemical reactions on interfacial friction. In addition, it is necessary to clarify the relationship between the interface friction phenomenon and physical surface defects in CMP, and the cause of their occurrence.

A Study on Recycling of Waste Oyster Shells as Seed Crystals in Phosphorous Crystallization Process (정석탈인공정의 정석재로써 폐굴껍질의 재활용에 관한 연구)

  • 김은호;성낙창;장성호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.133-138
    • /
    • 1997
  • The technology of removing phosphorous, considered as one of the most important control nutrients causing eutrophication in various water bodies, have been investigated by many researchers. Recently, phosphorous crystallization process is emerging as a new technology for phosphorous removal. In this study, waste oyster shells which can be easily obtained from the ocean, were used as a seed crystal, and their effects of several physical/chemical factors on the phosphorous removal efficiencies were examined by batch tests. Ca$^{2+}$ and pH affected phosphorous crystallization process using waste oyster shells. As alkalinity of wastewater increased, phosphorous removal efficiencies gradually decreased. Phosphorous removal efficiencies were increased, as specific area and contact efficiency per unit area of waste oyster shells were increased. In case of high temperature, phosphorous crystallization process was rapidly advanced and phosphorous removal efficiencies were increased. Dependig on X-ray diffraction analysis, it was showed that generation materials extracted from the surface of waste oyster shells with short reaction time were dominated by $CaHPO_4\cdot 2H_2O$, but progressed to $Ca_5(OH)(PO_4)_3$. The SEM observation reveals that the evident variations were hardly seen, but particle sizes of waste oyster shells were relatively bigger and showed forms of smaller plate than before.

  • PDF