Browse > Article
http://dx.doi.org/10.4491/eer.2014.079

Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes  

Sailo, Lalsaimawia (Department of Chemistry, School of Physical Sciences, Mizoram University)
Pachuau, Lalramnghaki (Department of Chemistry, School of Physical Sciences, Mizoram University)
Yang, Jae Kyu (Division of General Education, Kwangwoon University)
Lee, Seung Mok (Department of Health and Environment, Catholic Kwandong University)
Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences, Mizoram University)
Publication Information
Abstract
Remediation of wastewater contaminated with metal(II)-complexed species (Cu(II)-NTA (NTA: nitrilotriacetic acid), Cu(II)-EDTA (EDTA: ethylenediamine tetraacetic acid) and Cd(II)-EDTA is attempted using the potential applicability of ferrate(VI). Kinetics of pollutant degradation is obtained with the removal of ferrate(VI) studied at wide range of pH (8.0-10.0) and the concentration of metal(II)-complexed species (0.3 to 15.0 mmol/L) employing a constant dose of ferrate(VI) i.e., 1.0 mmol/L. Pseudo-first-order and pseudo-second-order rate constants were obtained in the reduction of ferrate(VI) which was then employed to obtain the overall rate constants of the pollutant degradation. The mineralization of NTA and EDTA was obtained with the change in TOC (total organic carbon) values collected by the ferrate(VI) treated pollutant samples. Decrease in pH and molar pollutant concentrations was greatly favored the percent mineralization of NTA or EDTA by the ferrate(VI) treatment. The treated pollutant samples were filtered and subjected for AAS (atomic absorption spectrophotometric) analysis to assess the simultaneous removal of copper and cadmium from aqueous solutions at the studied pH as well at the elevated pH 12.0. Results show that an enhanced removal of cadmium or copper was achieved at pH 12.0. Overall, ferrate(VI) possesses multifunctional application in wastewater treatment as it oxidizes the degradable impurities and removes metallic impurities by coagulation process.
Keywords
Coagulation; Ferrate(VI); Kinetics; Metal(II)-complexed species; Mineralization; Oxidation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang P, Zhang G, Dong J, Fan M, Zeng G. Bisphenol A oxidative removal by ferrate (Fe(VI)) under weak acidic condition. Sep. Purif. Technol. 2012;84:46-51.   DOI   ScienceOn
2 Han Z, Chang VW, Wang X, Lim TT, Hildemann L. Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts. Chem. Eng. J. 2013;218:9-18.   DOI   ScienceOn
3 Pachuau L. Ferrate(VI): a green chemical for the treatment of aqueous wastes [dessertation]. Aizawl, India: Mizoram University; 2013.
4 Nortemann B. Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. ACS Symp. Ser. 2005;910:150-170.
5 Ohta T, Kamachi T, Shiota Y, Yoshizawa K. A theoretical study of alcohol oxidation of ferrate. J. Org. Chem. 2001;66:4122-4131.   DOI   ScienceOn
6 Sharma VK, O'Connor DB, Cabelli D. Oxidation of thiocyanate by iron(V) in alkaline medium. Inorganica Chim. Acta 2004;357:4587-4591.   DOI   ScienceOn
7 Jiang JQ, Zhou Z, Pahl O. Preliminary study of ciprofloxacin(cip) removal by potassium ferrate (VI). Sep. Purif. Technol. 2012;88: 95-98.   DOI   ScienceOn
8 Sharma VK, Burnett CR, O'Connor DB, Cabelli D. Iron(VI) and iron(V) oxidation of thiocyanate. Environ. Sci. Technol. 2002;36:4182-4186.   DOI   ScienceOn
9 Sharma VK, Yngard RA, Cabelli DE, Baum JC. Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate and copper(I) cyanide. Radiat. Phys. Chem. 2008;77:761-767.   DOI   ScienceOn
10 Lee C, Lee Y, Schmidt C, Yoon J, von Gunten U. Oxidation of suspected N- nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the DMA formation potential of natural waters. Water Res. 2008;42:433-441.   DOI   ScienceOn
11 DeLuca SJ, Chao AC, Smallewood C. Removal of organic priority pollutants by oxidation-coagulation. J. Environ. Eng. 1983;109: 36-46.   DOI
12 Gyliene O, Rekertas R, Salkauskas M. Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musa domestica) larva shells. Water Res. 2002;36:4128-4136.   DOI   ScienceOn
13 Nowack B, Xue H, Sigg L. Influence of natural and anthropogenic ligands on metal transport during infiltration on river water to groundwater. Environ. Sci. Technol. 1997;31:866-872.   DOI   ScienceOn
14 Lan S, Ju F, Wu X. Treatment of wastewater containing EDTA-Cu(II) using the combined process of interior microelectrolysis and fenton oxidation-coagulation. Sep. Purif. Technol. 2012;89:117-124.   DOI   ScienceOn
15 Aydin H, Buluta Y, Yerlikayab E. Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 2008;87:37-45.   DOI   ScienceOn
16 Davis AP, Green DL. Photocatalytic oxidation of cadmium- EDTA with titanium dioxide. Environ. Sci. Technol. 1999;33:609-617.   DOI   ScienceOn
17 Wu P, Zhou J, Wang X, et al. Adsorption of Cu-EDTA complexes from aqueous solutions by polymeric Fe/Zr pillared montmorillonite: behaviors and mechanisms. Desalination 2011;277:288-295.   DOI   ScienceOn
18 Licsko I, Takacs I. Heavy metal removal in the presence of colloid-stabilizing organic material and complexing agents. Water Sci. Technol. 1996;18:19-29.
19 Jiang S, Qu J, Xiong Y. Removal of chelated copper from wastewaters by $Fe^{2+}$-based replacement-precipitation. Environ. Chem. Lett. 2010;8:339-342.   DOI
20 Issabayeva G, Aroua MK, Sulaiman NM. Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 2010;262:94-98.   DOI   ScienceOn
21 Sricharoenchaikit P. Ion exchange treatment for elctroless copper- EDTA rinse water. Plat. Surf. Finish 1989;76:68-70.
22 Borbely G, Nagy E. Removal of zinc and nickel ions by complexation- membrane filtration process from industrial wastewater. Desalination 2009;240:218-226.   DOI   ScienceOn
23 Yeh RS, Wang YY, Wan CC. Removal of Cu-EDTA compounds via electrochemical process with coagulation. Water Res. 1995; 29:597-599.   DOI   ScienceOn
24 Spearot RM, Peck JV. Recovery process for complexed copper- bearing rinse waters. Environ. Prog. 1984;3:124-128.   DOI   ScienceOn
25 Yang X, Wang JN, Cheng C. Preparation of new spongy adsorbent for removal of EDTA-Cu(II) and EDTA-Ni(II) from water. Chin. Chem. Lett. 2013;24:383-385.   DOI   ScienceOn
26 Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011;92:407-418.   DOI   ScienceOn
27 Zhen H, Xu Q, Hu Y, Cheng J. Characteristics of heavy metals capturing agent dithiocarbamate (DTC) for treatment of ethylene diamine tetraacetic acid-Cu (EDTA-Cu) contaminated wastewater. Chem. Eng. J. 2012;209:547-557.   DOI   ScienceOn
28 Wu L, Wang H, Lan H, Liu H, Qu J. Adsorption of Cu(II)-EDTA chelates on tri-ammonium-functionalized mesoporous silica from aqueous solution. Sep. Purif. Technol. 2013;117:118-123.   DOI   ScienceOn
29 Seshadri H, Chitra S, Paramasivan K, Sinha PK. Photocatalytic degradation of liquid waste containing EDTA. Desalination 2008;232:139-144.   DOI   ScienceOn
30 White VE, Knowles CJ. Degradation of copper-NTA by Mesorhizobium sp. NIMB 1352. Int. Biodeterior. Biodegradation 2003;52:143-150.   DOI   ScienceOn
31 Lan J, Zhang S, Lin H, et al. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere 2013;91:1362-1367.   DOI   ScienceOn
32 Lee HB, Peart TE, Kaiser KLE. Determination of nitrolotriacetic, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids in sewage treatment plant and paper mill effluents. J. Chromatogr. A 1996;738:91-99.   DOI   ScienceOn
33 Calapaj R, Ciraolo L, Corigliano F, Di Pasquale S. Dead-stop determination of EDTA and NTA in commercially available detergents. Analyst 1982;107:403-407.   DOI
34 Sharma VK. Potassium ferrate(VI): an environmentally friendly oxidant. Adv. Environ. Res. 2002;6:143-156.   DOI   ScienceOn
35 Li C, Li XZ, Graham N. A study of the preparation and reactivity of potassium ferrate. Chemosphere 2005;61:537-543.   DOI   ScienceOn
36 Lee Y, Cho M, Kim JY, Yoon J. Chemistry of Ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical. J. Ind. Eng. Chem. 2004;10:161-171.
37 Tiwari D, Yang JK, Lee SM. Applications of ferrate(VI) in the treatment of wastewaters. Environ. Eng. Res. 2005;10:269-282.   DOI   ScienceOn
38 Jiang JQ, Lloyd B. Progress in the development and use of ferrate(VI) salts as an oxidant and coagulant for water and wastewater treatment. Water Res. 2002;36:1397-1408.   DOI   ScienceOn
39 Jiang JQ. Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazard. Mater. 2007;146:617-623.   DOI   ScienceOn
40 Tiwari D, Lee SM. Ferrate (VI) in the treatment of wastewaters: a new generation green chemical. In: Prof. Fernando Sebastiin Garcia Einschlag ed. Waste Water - Treatment and reutilization. Vukovar: InTech; 2011.
41 Lee SM, Tiwari D. Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides: a green treatment. J. Environ. Sci. 2009;21:1347-1352.   DOI   ScienceOn
42 Yngard RA, Sharma VK, Filip J, Zboril R. Ferrate(VI) oxidation of weak-acid dissociable cyanides. Environ. Sci. Technol. 2008;42:3005-3010.   DOI   ScienceOn
43 Sharma VK. Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord. Chem. Rev. 2013;257:495-510.   DOI   ScienceOn
44 Yu MR, Chang YY, Tiwari D, Pachuau L, Lee SM, Yang JK. Treatment of wastewater contaminated with Cd(II)-NTA using Fe(VI). Desalination Water Treat. 2012;50:43-50.   DOI
45 Sharma VK, Burnett CR, Yngard RA, Cabelli D. Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environ. Sci. Technol. 2005;39:3849-3854.   DOI   ScienceOn
46 Tiwari D, Kim HU, Choi BJ, et al. Ferrate(VI): a green chemical for the oxidation of cyanide in aqueous/waste solutions. J. Environ. Sci. Health A 2007;42:803-810.
47 Yang JK, Tiwari D, Yu MR, Pachuau L, Lee SM. Application of Fe(VI) in the treatment of Zn(II)-NTA complexes in aqueous solutions. Environ. Technol. 2010;31:791-798.   DOI
48 Yu MR, Kim TH, Chang YY, Yang JK. Application of ferrate in the removal of copper-organic complexes. Sustain. Environ. Res. 2010;20:269-273.
49 Murshed M, Rockstraw DA, Hanson AT, Jhonson M. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate. Environ. Pollut. 2003;125:245-253.   DOI   ScienceOn
50 Yu MR, Chang YY, Keller AA, Yang JK. Application of ferrate for the treatment of metal-sulfide. J. Environ. Manage. 2013;116:95-100.   DOI   ScienceOn
51 Pachuau L, Lee SM, Tiwari D. Ferrate(VI) in wastewater treatment contaminated with metal(II)-iminodiacetic acid complexed species. Chem. Eng. J. 2013;230:141-148.   DOI   ScienceOn
52 Tiwari D, Sailo L, Pachuau L. Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate(VI). Sep. Purif. Technol. 2014;132:77-83.   DOI   ScienceOn
53 Li C, Li XZ, Graham N, Gao NY. The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res. 2008;42:109-120.   DOI   ScienceOn