• Title/Summary/Keyword: Physical layer

Search Result 1,951, Processing Time 0.028 seconds

Implementation of 1.5Gbps Serial ATA (1.5Gbps 직렬 에이티에이 전송 칩 구현)

  • 박상봉;허정화;신영호;홍성혁;박노경
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.63-70
    • /
    • 2004
  • This paper describes the link layer and physical layer of the Serial ATA which is the next generation for parallel ATA specification that defines data transfer between PC and peripheral storage devices. The link layer consists of CRC generation/error detection, 8b/10b decoding/encoding, primitive generation/detection block. For the physical layer, it includes CDR(Cock Data Recovery), transmission PLL, serializer/de-serializer. It also includes generation and receipt of OOB(Out-Of-Band) signal, impedance calibration, squelch circuit and comma detection/generation. Additionally, this chip includes TCB(Test Control Block) and BIST(Built-In Selt Test) block to ease debugging and verification. It is fabricated with 0.18${\mu}{\textrm}{m}$ standard CMOS cell library. All the function of the link layer operate properly. For the physical layer, all the blocks operate properly but the data transfer is limited to the 1.28Gbps. This is doe to the affection or parasitic elements and is verified with SPICE simulation.

The Study of Luminescence Efficiency by change of OLED's Hole Transport Layer

  • Lee, Jung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.52-55
    • /
    • 2006
  • The OLEDs(Organic Light-Emitting Diodes) structure organizes the bottom layer using glass, ITO(indium thin oxide), hole injection layer, hole transport layer, emitting material layer, electron transport layer, electron injection layer and cathode using metal. OLED has various advantages. OLEDs research has been divided into structural side and emitting material side. The amount of emitting light and luminescence efficiency has been improved by continuing effort for emitting material layer. The emitting light mechanism of OLEDs consists of electrons and holes injected from cathode and anode recombination in emitting material layer. The mobilities of injected electrons and holes are different. The mobility of holes is faster than that of electrons. In order to get high luminescence efficiency by recombine electrons and holes, the balance of their mobility must be set. The more complex thin film structure of OLED becomes, the more understanding about physical phenomenon in each interface is needed. This paper observed what the thickness change of hole transport layer has an affection through the below experiments. Moreover, this paper uses numerical analysis about carrier transport layer thickness change on the basis of these experimental results that agree with simulation results.

Basic characteristics of metal-ferroelectric-insulator-semiconductor structure using a high-k PrOx insulator layer

  • Noda, Minoru;Kodama, Kazushi;Kitai, Satoshi;Takahashi, Mitsue;Kanashima, Takeshi;Okuyama, Masanori
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.1-64
    • /
    • 2003
  • A metal-ferroelectric [SrBi$_2$Ta$_2$O$\_$9/ (SBT)-high-k-insulator(PrOx)-semiconductor(Si) structure has been fabricated and evaluated as a key part of metal-ferroelectric-insulator-semiconductor-field-effect-transistor MFIS-FET memory, aiming to improve the memory retention characteristics by increasing the dielectric constant in the insulator layer and suppressing the depolarization field in the SBT layer. A 20-nm PrOx film grown on Si(100) showed both a high of about 12 and a low leakage current density of less than 1${\times}$ 10e-8 A/$\textrm{cm}^2$ at 105 MV/cm. A 400-nm SBT film prepared on PrOx/Si shows a preferentially oriented (105) crystalline structure, grain size of about 130 nm and subface roughness of 3.2 nm. A capacitance-voltage hysteresis is confirmed on the Pt/SBT/PrOx/Si diode with a memory window of 0.3V at a sweep voltage width of 12 V. The memory retention time was about 1 104s, comparable to the conventional Pt/SBT/SiO$\_$x/N$\_$y/(SiO$\_$N/)/Si. The gradual change of the capacitance indicates that some memory degradation mechanism is different from that in the Pt/SBT/SiON/Si structure.

  • PDF

Effect of Na2P2O7 Electrolyte and Al Alloy Composition on Physical and Crystallographical Properties of PEO Coating Layer : I. Physical Properties of PEO Layer (플라즈마 전해 산화 코팅에 있어서 인산염 전해액과 모재 성분 변화가 Al 산화피막 물성에 미치는 영향 I. PEO층의 물성)

  • Kim, Bae-Yeon;Kim, Jeong-Gon;Lee, Deuk-Yong;Jeon, Min-Seok;Kim, Yong-Nam;Kim, Sung-Youp;Kim, Kwang-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.241-246
    • /
    • 2012
  • Physical properties of plasma electrolytic oxidized layers of 8 different kinds of Al alloys, A-1100, A-2024, A-5052, A-6061, A-6063, A-7075, ACD-7B and ACD-12 were investigated. The electrolyte for plasma electrolytic oxidation was mixture of distilled water, $Na_2P_2O_7$, KOH and some metal salts. Growth rate of oxide layer was slower in $Na_2P_2O_7$ electrolyte system than in $Na_2SiO_3$ system, and Ra50 surface roughness of oxidized layer was below $1.2{\mu}m$. Surface hardness in $Na_2P_2O_7$ electrolyte system is higher than in $Na_2SiO_3$ system, and roughness was lower in $Na_2P_2O_7$ electrolyte system than in $Na_2SiO_3$ system.

Physical Layer Modem Implementation for mmWave 5G Mobile Communication (밀리미터파 5G 이동통신을 위한 물리계층 모뎀의 구현)

  • Kim, Jun-woo;Bang, Young-jo;Park, Youn-ok;Kim, Ilgyu;Kim, Tae Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • This paper describes the physical layer modem structure of Giga KOREA 5G system which is being developed by ETRI as a 5G telecommunications prototype. The objective of Giga KOREA 5G system is supporting maximum 100 Gbps data rate for each cell with wide-bandwidth baseband station and mobile station prototypes in mmWave (10~40 GHz) environment. To achieve this objective, its physical layer is composed of high performance baseband station as well as mobile station and their OFDM TDD modems. The important features of Giga KOREA 5G physical layer are carrier aggregation, multiple receiving beam searching in mobile station, high data rate channel encoder and decoder and high speed modulation and demodulation functions.

Relay Network using UAV: Survey of Physical Layer and Performance Enhancement Issue (무인항공기를 이용한 중계네트워크: 물리계층 동향분석 및 성능향상 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.901-906
    • /
    • 2019
  • UAV (Unmanned Aerial Vehicle) is widely used in various areas such as civil and military applications including entertainment industries. Among them, UAV based communication system is also one of the important application areas. Relays have been received much attention in communication system due to its benefits of performance enhancement and coverage extension. In this paper, we investigate UAVs as relays especially focusing on physical layer. First, we introduce the research on UAV application for the relays, then the basic performance of relay networks in dual-hop communication system is analyzed by adopting decode-and-forward (DF) relaying protocol. The performance is represented using symbol error rate (SER) and UAV channels are applied by assuming asymmetric environments. Based on the performance analysis, we discuss performance enhancement issues by considering physical layer.

Adaptation of the parameters of the physical layer of data transmission in self-organizing networks based on unmanned aerial vehicles

  • Surzhik, Dmitry I.;Kuzichkin, Oleg R.;Vasilyev, Gleb S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.23-28
    • /
    • 2021
  • The article discusses the features of adaptation of the parameters of the physical layer of data transmission in self-organizing networks based on unmanned aerial vehicles operating in the conditions of "smart cities". The concept of cities of this type is defined, the historical path of formation, the current state and prospects for further development in the aspect of transition to "smart cities" of the third generation are shown. Cities of this type are aimed at providing more comfortable and safe living conditions for citizens and autonomous automated work of all components of the urban economy. The perspective of the development of urban mobile automated technical means of infocommunications is shown, one of the leading directions of which is the creation and active use of wireless self-organizing networks based on unmanned aerial vehicles. The advantages of using small-sized unmanned aerial vehicles for organizing networks of this type are considered, as well as the range of tasks to be solved in the conditions of modern "smart cities". It is shown that for the transition to self-organizing networks in the conditions of "smart cities" of the third generation, it is necessary to ensure the adaptation of various levels of OSI network models to dynamically changing operating conditions, which is especially important for the physical layer. To maintain an acceptable level of the value of the bit error probability when transmitting command and telemetry data, it is proposed to adaptively change the coding rate depending on the signal-to-noise ratio at the receiver input (or on the number of channel decoder errors), and when transmitting payload data, it is also proposed to adaptively change the coding rate together with the choice of modulation methods that differ in energy and spectral efficiency. As options for the practical implementation of these solutions, it is proposed to use an approach based on the principles of neuro-fuzzy control, for which examples of determining the boundaries of theoretically achievable efficiency are given.

Influence of Flow Conditions on a Boundary Layer to the Near-Wake of a Flat Plat (평판 경계층 유동조건이 근접후류에 미치는 영향)

  • Kim, D.H.;Chang, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1625-1630
    • /
    • 2004
  • An experimental study was carried out to investigate influence of flow conditions on a boundary layer to the near-wake of a flat plate. The flow condition in the vicinity of trailing edge that is influenced by upstream condition history is an essential factor that determines the physical characteristics of a near-wake. Various tripping wires were used to change boundary layer flow condition of upstream at the freestream velocity of 6.0 m/sec. Measurements of the boundary layer and near-wake according to the change of upstream conditions were conducted by using both I-probe(55P14 for boundary layer) and X-probe(55P61 for wake). Normalized velocity profiles of the boundary layer were shown the flow types such as laminar boundary layer, transition, and turbulent boundary layer at 0.95C from the leading edge. The velocity and turbulence intensity profiles of the near-wake for the case of laminar boundary layer at the flat plate surface exhibited a defect and a double peak showing perfect symmetry, respectively.

  • PDF

Exchange Bias Modifications in NiFe/FeMn/NiFe Trilayer by a Nonmagnetic Interlayer

  • Yoon, S.M.;Sankaranarayanan V.K.;Kim, C.O.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.99-102
    • /
    • 2005
  • Modification in exchange bias of a NiFe/FeMn/NiFe trilayer, on introduction of a nonmagnetic Al layer at the top FeMn/NiFe interface, is investigated in multilayers prepared by rf magnetron sputtering. The introduction of Al layer leads to vanishing of bias of the top NiFe layer. But the bias for the bottom NiFe layer increases steadily with increasing Al layer thickness and attains bias (230 Oe) which is greater than that of the trilayer without the Al layer (150 Oe). When the top NiFe layer thickness is varied, exchange bias has highest value at 12 nm thickness for 1 nm thicknes of Al layer. Ion beam etching of the top NiFe layer also leads to an enhancement in bias for the bottom NiFe layer.

The Impact of Hardware Impairments and Imperfect Channel State Information on Physical Layer Security (하드웨어왜곡과 불완전한 채널상태정보가 물리계층보안에 미치는 영향)

  • Shim, Kyusung;Do, Nhu Tri;An, Beongku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.79-86
    • /
    • 2016
  • Physical layer security is cryptography technique to protect information by using physical nature of signals. Currently, many works on physical layer security have been actively researching while those researching models still have some problems to be solved. Eavesdropper does not share its channel state information with legitimate users to hide its presence. And when node transmits signal, hardware impairments are occurred, whereas many current researches assume that node model is ideal node and does not consider hardware impairments. The main features and contributions of this paper to solve these problems are as follows. First, our proposed system model deploys torch node around legitimate user to obtain channel state information of eavesdropper and considers hardware impairments by using channel state information of torch node. Second, we derive closed-form expression of intercept probability for the proposed system model. The results of the performance evaluation through various simulations to find out the effects on proposed system model in physical layer security show that imperfect channel state information does not effect on intercept probability while imperfect node model effects on intercept probability, Ergodic secrecy capacity and secrecy capacity.