• Title/Summary/Keyword: Physical Measurement Units

Search Result 33, Processing Time 0.047 seconds

A Calibration Study of Therapeutic Ultrasound Equipment Output Intensity Accuracy

  • Yuk, Goon-Chang;Ahn, Sang-Ho;Park, So-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.37-42
    • /
    • 2011
  • Purpose: The principal objective of this study was to evaluate the power output of ultrasound in Korean clinics and compare the value with Korean and global standards. Methods: A total of 69 units were measured for ultrasound power output. The normal range of power output level was ${\pm}30%$ of the output set according to KFDA standards. Device model, manufacturer, ERA, and BNR were obtained via simple questionnaires. A portable ultrasound power meter was used for output measurement. Results: 37 machines, with reported ERA values, were assessed for power output per unit area. Of these machines, 13 (37.14%) were considered to be compliant with US FDA standards at 0.5, 1.0, 1.5, $20W/cm^2$ and 18 (51.43%) were considered within KFDA standards. The remainder of the machines were outside the standard error and evidenced irregular output levels, even though most of them were the same model. Conclusion: Appropriate ultrasound intensity is incredibly important for safety and effective use. Therefore, the KFDA standards regarding ultrasound may require revision in light of global standards, including BNR and ERA additionally, attention should be paid to regular calibration for safe use in clinical practice.

Workload Measurement of Home Health Care Nurses상 Services using Relative Value Units (가정간호행위 업무량의 상대적 가치 측정에 관한 연구)

  • 이태화;박정숙;김인숙
    • Journal of Korean Academy of Nursing
    • /
    • v.30 no.6
    • /
    • pp.1543-1555
    • /
    • 2000
  • Home health care is moving into a set of new realities. An era of competition and cost containment has arrived. Before nurses are able to contain costs or describe the relationship between nursing activities, cost must be accurately measured based on the nurse's workload. Nurses in home health care usually desire to measure expenses for one of three reasons : reimbursement, management, or research. The purpose of the study was to investigate the work input by Registered Nurse in each of the home health care activities by relative value units and identify the factors affecting the nurses' total work input in health care services. To measure the work input by nurses, work was defined by four dimensions: time, physical effort, mental effort, and stress. This study used a descriptive-correlational design. Data collection consisted of two phases. In phase I, data on home health activities performed by nurses were collected. In phase II, data on nurses' time, physical effort, mental effort, and stress in each of home health care activities discovered phase I were collected. In this method, the respondent was asked to rate a service in relation to a reference service using a ratio scale. The sample included 39 home health care nurses. The results of the study indicated that home health care activities performed by the nurses were in 10 categories and 69 items. Measuring the relative work inputs in each of home health care activities, and foley catheterization was selected as the reference to service. In terms of time and physical effort dimensions, full bath service was rated as the most strenuous among 69 activities by the respondents, and intramuscular injection was rated as least. It was found that emergency treatment required the highest mental effort and the highest stress, while blood sugar tests required the lowest mental effort. Approximately 91.3% of the variance in total work input was accounted for by the linear combination of time, physical effort, mental effort judgement, and stress. Examining the regression coefficients of those variables, physical effort, time, and stress were found as the predictors which were significantly associated with the total work of nurses in home health care. Professional nursing's next step in the conundrum of economic volatility is to develop a tool to reflect the interaction of functional deficiency and direct professional nursing care. And this will be a more accurate predictor of nursing resource use and ultimately a great forcaeter cost.

  • PDF

Evaluation and Development in Sound Design a Matter of Combining Physical and Perception Data in Noise and Vibration

  • Schulte-Fortkamp, Brigitte
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.43-43
    • /
    • 2010
  • Presently, there is the dilemma of uncertainty with respect to the evaluation of sound and vibration based on the fact that there is obviously no agreement upon appropriate methods to measure the "truth" concerning the acceptance of sound and vibration. To evaluate properly physical and perception data in sound and vibration it is necessary to implement new methods and innovative approaches to understand the input of human response in sound design. Fortunately, an elaborate dialogue of the usefulness and applicability of those approaches is in progress. Moreover, the need of using and combining perception and physical data in order to comprehend the process of human perception and evaluation sufficiently is widely accepted. However, still the question remains how the goal of an adequate combination can be achieved. Clearly, themultidimensional human perception cannot be easily reduced to singular numbers. Moreover, factors, among others the meaning of the sound, the composition of the diverse sound sources, the listener's attitude, expectations and experiences, are significant parameters which have to be considered to comprehend the different perceptions and evaluations with regard to specific stimuli. Taking under consideration the physical, psychological, and cognitive dimensions as well as the integration of aspects of design require partially various new approaches. While binaural measurement and analysis technologies and psycho-acoustics are well established as they are proved to be valuable auxiliary tools; it has not been achieved to develop generally acceptable measurement units concerning sound quality. Consequently, there is a need for new approaches and methods which make it possible to comprehend sufficiently the process of perception and evaluation. Going with people's mind will be one solution for the future; thisconcept will be introduced based on the development in sound design.

  • PDF

Proficiency Test of Water Flow Rate for Measurement Equivalence Among KOLAS Accredited Laboratories (KOLAS 교정기관의 측정동등성 확립을 위한 물유량 숙련도 시험)

  • Chun, Sejong;Yoon, Byung-Ro;Kim, Soo-Jin
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • KOLAS (KOrea Laboratory Accreditation Scheme) belongs to APLAC (Asia Pacific Laboratory Accreditation Cooperation). KOLAS manages the accreditation scheme for measurement traceability to SI units. As per June 2016, there are 22 KOLAS laboratories for liquid flow metering. Among them, 12 laboratories participated in the proficiency test (PM2015-08) for water flow metering, organized by KASTO (Korea Association of Standards and Testing Organizations). This proficiency test was performed with three kinds of flow ranges ($3.6m^3/h{\sim}12m^3/h$, $40m^3/h{\sim}80m^3/h$, $40m^3/h{\sim}200m^3/h$) considering the CMC (calibration and measurement capability) of the participating laboratories. The purpose of the proficiency test was to find out measurement equivalence of the CMC's between each participating laboratory and the reference testing laboratory (KRISS). The measurement equivalence was tested by the number of equivalence ($E_n$). If ${\mid}E_n{\mid}$ < 1, the measurement equivalence was established. All the participating laboratories passed this proficiency test.

Measurement uncertainty analysis of radiophotoluminescent glass dosimeter reader system based on GD-352M for estimation of protection quantity

  • Kim, Jae Seok;Park, Byeong Ryong;Yoo, Jaeryong;Ha, Wi-Ho;Jang, Seongjae;Jang, Won Il;Cho, Gyu Seok;Kim, Hyun;Chang, Insu;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.479-485
    • /
    • 2022
  • At the Korea Institute of Radiological and Medical Sciences, physical human phantoms were developed to evaluate various radiation protection quantities, based on the mesh-type reference computational phantoms of the International Commission on Radiological Protection. The physical human phantoms were fabricated such that a radiophotoluminescent glass dosimeter (RPLGD) with a Tin filter, namely GD-352M, could be inserted into them. A Tin filter is used to eliminate the overestimated signals in low-energy photons below 100 keV. The measurement uncertainty of the RPLGD reader system based on GD-352M should be analyzed for obtaining reliable protection quantities before using it for practical applications. Generally, the measurement uncertainty of RPLGD systems without Tin filters is analyzed for quality assurance of radiotherapy units using a high-energy photon beam. However, in this study, the measurement uncertainty of GD-352M was analyzed for evaluating the protection quantities. The measurement uncertainty factors in the RPLGD include the reference irradiation, regression curve, reproducibility, uniformity, energy dependence, and angular dependence, as described by the International Organization for Standardization (ISO). These factors were calculated using the Guide to the Expression of Uncertainty in Measurement method, applying ISO/ASTM standards 51261(2013), 51707(2015), and SS-ISO 22127(2019). The measurement uncertainties of the RPLGD reader system with a coverage factor of k = 2 were calculated to be 9.26% from 0.005 to 1 Gy and 8.16% from 1 to 10 Gy. A blind test was conducted to validate the RPLGD reader system, which demonstrated that the readout doses included blind doses of 0.1, 1, 2, and 5 Gy. Overall, the En values were considered satisfactory.

Movement Analysis of Women's Handball Players by Position using Inertial Measurement Units (관성센서를 이용한 여자핸드볼 선수들의 포지션별 움직임 분석)

  • Park, Jong-Chul;Yoon, Kyung-Shin;Kim, Ji-Eung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.343-350
    • /
    • 2020
  • This study was intended to use the Inertia Sensor Units(IMU) for the national women's handball team to quantify movements for a total of 16 domestic or international practice games over five months and to identify the efficiency of training and differences in movements by position. A total of 15 players were participated excluding goalkeepers. The results are as follows. Player Load came in order of Wing>Back>Pivot and high in international games. Change of Direction(CoD) were found to have the most Pivot at low intensity, while middle and high intensity were the most in the Back. There have been a lot of low and middle intensity CoD in International games. Low-intensity acceleration(ACC) and deceleration(DEC) were found to have the most Pivot, while middle & high intensity ACC and DEC had the most Back. There have been many low and middle intensity ACC and low, middle and high intensity DEC in international games. There were many middle and high intensity jumps in Back and Wing, but there were no differences in the types of games.

Deformation estimation of truss bridges using two-stage optimization from cameras

  • Jau-Yu Chou;Chia-Ming Chang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Structural integrity can be accessed from dynamic deformations of structures. Moreover, dynamic deformations can be acquired from non-contact sensors such as video cameras. Kanade-Lucas-Tomasi (KLT) algorithm is one of the commonly used methods for motion tracking. However, averaging throughout the extracted features would induce bias in the measurement. In addition, pixel-wise measurements can be converted to physical units through camera intrinsic. Still, the depth information is unreachable without prior knowledge of the space information. The assigned homogeneous coordinates would then mismatch manually selected feature points, resulting in measurement errors during coordinate transformation. In this study, a two-stage optimization method for video-based measurements is proposed. The manually selected feature points are first optimized by minimizing the errors compared with the homogeneous coordinate. Then, the optimized points are utilized for the KLT algorithm to extract displacements through inverse projection. Two additional criteria are employed to eliminate outliers from KLT, resulting in more reliable displacement responses. The second-stage optimization subsequently fine-tunes the geometry of the selected coordinates. The optimization process also considers the number of interpolation points at different depths of an image to reduce the effect of out-of-plane motions. As a result, the proposed method is numerically investigated by using a truss bridge as a physics-based graphic model (PBGM) to extract high-accuracy displacements from recorded videos under various capturing angles and structural conditions.

A Study on the Efficiency Measurement of Vehicles by DEA Method (DEA에 의한 자동차 효율성 비교분석에 관한 연구)

  • Jung, Kyung-Hee;Cho, Jai-Rip
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.189-199
    • /
    • 2008
  • It is good to use DEA method as it can measure the efficiency without depending on a specific function like cost function. The method also finds out the most efficient group among the sample groups and gives us a specific number. For example, it shows what kind of factor of inefficient group gives how much input and produces how much output. Originally DEA, which was developed by Charnes, Cooper and Rhodes, allows us not only to measure the relative efficiency of Decision Making Units(DMUs) of non-profit organizations whose success cannot be measured by a single bottom-line figure such as profit but also to integrate several variables, which have different measuring scale, into a single model. Therefore we can use physical scales and financial scales simultaneously in the same model without any transformation process. In this study, price and measurable performance indexes of vehicles are used as input and outputs respectively. The purpose of this study is to propose an effective approach for evaluating the relative efficiency of vehicles and to determine the vehicles have high performance efficiency compared to product cost.

  • PDF

Development of a Wearable Inertial Sensor-based Gait Analysis Device Using Machine Learning Algorithms -Validity of the Temporal Gait Parameter in Healthy Young Adults-

  • Seol, Pyong-Wha;Yoo, Heung-Jong;Choi, Yoon-Chul;Shin, Min-Yong;Choo, Kwang-Jae;Kim, Kyoung-Shin;Baek, Seung-Yoon;Lee, Yong-Woo;Song, Chang-Ho
    • PNF and Movement
    • /
    • v.18 no.2
    • /
    • pp.287-296
    • /
    • 2020
  • Purpose: The study aims were to develop a wearable inertial sensor-based gait analysis device that uses machine learning algorithms, and to validate this novel device using temporal gait parameters. Methods: Thirty-four healthy young participants (22 male, 12 female, aged 25.76 years) with no musculoskeletal disorders were asked to walk at three different speeds. As they walked, data were simultaneously collected by a motion capture system and inertial measurement units (Reseed®). The data were sent to a machine learning algorithm adapted to the wearable inertial sensor-based gait analysis device. The validity of the newly developed instrument was assessed by comparing it to data from the motion capture system. Results: At normal speeds, intra-class correlation coefficients (ICC) for the temporal gait parameters were excellent (ICC [2, 1], 0.99~0.99), and coefficient of variation (CV) error values were insignificant for all gait parameters (0.31~1.08%). At slow speeds, ICCs for the temporal gait parameters were excellent (ICC [2, 1], 0.98~0.99), and CV error values were very small for all gait parameters (0.33~1.24%). At the fastest speeds, ICCs for temporal gait parameters were excellent (ICC [2, 1], 0.86~0.99) but less impressive than for the other speeds. CV error values were small for all gait parameters (0.17~5.58%). Conclusion: These results confirm that both the wearable inertial sensor-based gait analysis device and the machine learning algorithms have strong concurrent validity for temporal variables. On that basis, this novel wearable device is likely to prove useful for establishing temporal gait parameters while assessing gait.

Comparison of Hounsfield Units by Changing in Size of Physical Area and Setting Size o f Region o f Interest b y Using the CT Phantom Made with a 3D Printer (3D 프린터로 제작된 CT 팬톰을 이용한 물리적 관심영역과 설정 관심영역의 크기에 따른 하운스필드의 비교)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • In this study, we have observed the change of the Hounsfield (HU) in the alteration of by changing in size of physical area and setting size of region of interest (ROI) at focus on kVp and mAs. Four-channel multi-detector computed tomography was used to get transverse axial scanning images and HU. Three dimensional printer which is type of fused deposition modeling (FDM) was used to produce the Phantom. The structure of the phantom was designed to be a type of cylinder that contains 33 mm, 24 mm, 19 mm, 16 mm, 9 mm size of circle holes that are symmetrically located. It was charged with mixing iodine contrast agent and distilled water in the holes. The images were gained with changing by 90 kVp, 120 kVp, 140 kVp and 50 mAs, 100 mAs, 150 mAs, respectively. The 'image J' was used to get the HU measurement of gained images of ROI. As a result, it was confirmed that kVp affects to HU more than mAs. And it is suggested that the smaller size of physical area, the more decreasing HU even in material of a uniform density and the smaller setting size of ROI, the more increasing HU. Therefore, it is reason that to set maximum ROI within 5 HU is the best way to minimize in the alteration of by changing in size of physical area and setting size of region of interest.