
| Abstract |

Purpose: The study aims were to develop a wearable inertial sensor-based gait analysis device that uses machine learning 

algorithms, and to validate this novel device using temporal gait parameters.

Methods: Thirty-four healthy young participants (22 male, 12 female, aged 25.76 years) with no musculoskeletal disorders were 

asked to walk at three different speeds. As they walked, data were simultaneously collected by a motion capture system and inertial 

measurement units (Reseed®). The data were sent to a machine learning algorithm adapted to the wearable inertial sensor-based 

gait analysis device. The validity of the newly developed instrument was assessed by comparing it to data from the motion capture 

system. 

Results: At normal speeds, intra-class correlation coefficients (ICC) for the temporal gait parameters were excellent (ICC [2, 

1], 0.99∼0.99), and coefficient of variation (CV) error values were insignificant for all gait parameters (0.31∼1.08%). At slow 

speeds, ICCs for the temporal gait parameters were excellent (ICC [2, 1], 0.98∼0.99), and CV error values were very small for 

all gait parameters (0.33∼1.24%). At the fastest speeds, ICCs for temporal gait parameters were excellent (ICC [2, 1], 0.86∼0.99) 

but less impressive than for the other speeds. CV error values were small for all gait parameters (0.17∼5.58%).  

Conclusion: These results confirm that both the wearable inertial sensor-based gait analysis device and the machine learning 

algorithms have strong concurrent validity for temporal variables. On that basis, this novel wearable device is likely 

to prove useful for establishing temporal gait parameters while assessing gait. 
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Ⅰ. Introduction

The wearable inertial measurement unit (IMU), which 

combines an accelerometer and a gyroscope, has 

developed rapidly, opening up a significant scientific and 

applicable breakthrough in many research fields. Due to 

its many positive properties such as light weight, small 

size, low power consumption, portability and low cost, 

inertial sensors are also increasingly used in human motion 

analysis as they are more and more commonly used. In 

particular, since walking ability is one of the essential 

functions that have an important influence on quality of 

life, many studies on walking analysis using inertial 

sensors have been conducted (Sprager & Juric, 2015). 

The gait study using the inertial sensor, rather than the 

gait study using the 3D motion analyzer, which was 

mainly available only in the laboratory, was able to 

continuously analyze in the clinical environment inside 

and outside the laboratory (Shull et al., 2014). In addition, 

due to the integration of smart devices (e.g. smartphones 

and tablets) and inertial sensors, it is used in various areas 

such as sports walking speed estimation (Yang & Li, 2012) 

and health condition evaluation (Yamada et al., 2012), 

fall detection (Sposaro & Tyson, 2009). 

However, analysis of the spatiotemporal variables of 

gait using Wearable IMU has been conducted (Caldas 

et al., 2017; Chen et al., 2016). Few are used to meet 

clinical assessment needs (Mancini & Horak, 2016). One 

of them is the APDM sensor, which allows clinicians 

to perform gait evaluation in a simple and fast manner. 

A sensor is placed on the ankle or foot to evaluate gait 

parameters. However, he noted that this sensor has 

strengths and weaknesses such as improved wear-ability 

due to placement on the ankle, increased data volume 

along with the placement of the foot, as well as a study 

on validity and repeatability (Washabaugh et al., 2017). 

Many studies have analyzed gait using one or two 

sensors (Bertoli et al., 2018; Kluge et al., 2017; Schwesig 

et al., 2011). However, these studies measured spatial 

parameters for one leg. The calculation of the factors (step 

length, and step width) for the spatial relationship of both 

legs is complicated and there is still insufficient research 

on this problem (Bertuletti et al., 2017; Kose et al., 2012; 

Takeda et al., 2014). 

In a comparative study on the spatial and temporal 

gait analysis between the standard stationary treadmill 

and the inertial sensor attached to the body, which is 

commonly used in gait analysis, the speed and stride of 

slow gait in temporal gait characteristics It showed a slight 

difference except length. The study was conducted in 

healthy elderly people (Donath et al., 2016). 

While the wearable IMU can be applied in various 

forms and has numerous advantages, it is technically 

difficult to assess gait speed from accelerometry data, 

and there are some inaccuracies in obtaining and analyzing 

the data. To improve this, machine learning techniques 

can be used to significantly improve accuracy (Potluri 

et al., 2019). Machine learning is the process of solving 

tasks for which it is difficult to design or to program 

explicit algorithms (Lee et al., 2017). Machine learning 

is the process of affording computers the ability to learn 

without writing explicit programs. (Samuel, 1959). The 

purpose of machine learning is to learn data prediction 

values after training with existing data. To this end, a 

machine learning algorithm is validated by training and 

testing processes. The core of the training process is to 

generate the model by learning the initial data and that 

of the test process is to derive the result by comparing 

and verifying the data with that of the learning model 

(Lee et al., 2017). 

Therefore, in this study, the data collected using the 

wearable IMU is analyzed by machine learning and the 

result is compared with the gait analysis result using the 

3D gait analysis system to increase the validity of the 
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temporal gait parameter through the wearable IMU.

Ⅱ. Methods

1. Subjects

Thirty-four healthy young participants (25.76 ± 4.09 

years old; 12 women, 22 men; height 170.14 ± 10.07cm; 

weight 66.47 ± 13.61kg) from S University in Seoul were 

recruited for this study. None of the participants had any 

disabilities or history of musculoskeletal, neurological, 

or equilibrium sensory dysfunctions that could affect gait 

on a level surface. Subjects were given detailed 

information about the study prior to the experiment. 

Written consent was obtained from all subjects prior to 

participation in accordance with the ethical principles of 

the Helsinki Declaration. 

2. Procedures

This study was conducted in three stages. The first 

stage was the data collection process, in which data was 

collected by simultaneously using the infrared camera and 

inertial measurement unit (Reseed® 1.2.0, Bodit, Korea). 

The second stage was the machine learning process, in 

which the data collected and processed by the infrared 

camera, was learned and verified through a training 

process and testing process. The third stage was the 

validity verification process, in which the data collected 

by the infrared camera was compared with the data 

calculated through machine learning. Data obtained from 

3570 steps executed at 3 speeds were used for machine 

learning and data from 3642 steps executed at 3 speeds 

were used to validate the wearable inertial sensor-based 

gait analysis device using a machine learning algorithm.

3. Motion capture and data collection

An infrared camera motion analysis system (Miqus 3, 

Qualisys, Sweden) was used to measure temporal gait 

data. 16 infrared cameras were used and the sample rate 

was 100 frames/sec. For the infrared cameras to track 

motion reflective markers, clusters were attached to the 

thigh and shin to measure movement. To collect image 

data, four cameras were installed at the front, four cameras 

at the back and four cameras each on the left and right 

sides. All subjects wore leggings and a total of 52 markers 

were attached to the joints and segmental surfaces of the 

entire body and a resting calibration was performed. After 

removing the static marker, sufficient practice was 

conducted to induce a natural gait motion. The walking 

speed was regulated to 3 modes; slow and fast walking 

was performed based on the subject’s self-selected speed. 

The walking distance was more than 5 meters and 3 strides 

were measured for each foot. The measurement program 

used Qualisys Track Manager version 2020. The speed 

measurements were made 5 times and averaged for each 

trial, and the data were compared 5 times without being 

averaged.

Matlab (MATLAB Student R2020a, MatWorks, USA) 

was used to extract the temporal gait parameters from 

the collected data the lowest point of the z-axis trajectory 

of the heel marker was used to define the heel strike, 

and the XY angle value of the vertical segment of the 

heel marker and 1st metatarsal marker was used to define 

the toe-off.

4. Machine learning

An inertial measurement unit (Reseed® 1.2.0, Bodit, 

Korea) was used to collect basic data for the machine 

learning stage. The inertial sensor was calibrated to detect 

angular velocity along 3-axes for acceleration and 3-axes 
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for rotation (Fig. 1). The inertial sensor measured the 

change in the rotational angular velocity due to 

acceleration and linear rotation generated when walking. 

Inertial sensors were attached to each ankle, the right 

anterior superior iliac spine, and half way toward the 

navel. The sensor attached to the ankle was used to detect 

heel contact and toe-off, which are difficult to infer from 

pelvic movement. The three inertial sensors were 

synchronized by simultaneously receiving the start/end 

signals, but the measurements from the infrared camera 

and inertial sensor were unsynchronized. 

Fig. 1. Inertial measurement unit (Reseed® 

1.2.0, Bodit, Korea).

The heel contact and toe-off actions acquired from the 

inertial sensor worn on the ankle were synchronized with 

the motion analyzer to synchronize the signal from the 

sensor attached to the pelvis and the signal from the 

infrared camera. By processing the acceleration and 

angular velocity data collected from the inertial sensor 

attached to the pelvis, 127 features were extracted to be 

used for machine learning.

To extract features for machine learning from the 

signals, the 6-axes signals of the most basic signals Ax, 

Ay, Az, Gx, Gy, and Gz, filtered signals, and the Euler 

angles that could be extracted using them, were used to 

represent the temporal domain. A total of 145 features 

were extracted from factors such as the integral value 

of ± based on the window size and zero-crossing point. 

To improve the model, the highly correlated features were 

first identified through feature-based correlation analysis. 

Because highly correlated features were duplicated, the 

performance of the model could have been affected thus 

requiring their removal. In addition, features with low 

importance were classified using a feature importance 

scale calculated by using the Light GBM algorithm. A 

total of 127 features were selected through this feature 

selection process. 

For the machine learning stage of this study, a 

regression learning model was used. Gradient Boosting, 

one of the tree-based machine learning algorithms, was 

used to create a predictive model for regression analysis. 

Before training the model, the training dataset was divided 

into training / validation datasets and the model was tuned. 

For model tuning, the coarse-to-fine search method was 

used to find model parameters quickly over a wide range 

and reduce the range again to find the optimal model 

parameters. To train the model, we divided it into a 

training dataset and a testing dataset using 5-fold 

cross-validation. The model was trained using the training 

dataset and the model was validated with the testing 

dataset. Jupyter notebook software (v.2.3, Project Jupyter, 

USA) was used for machine learning and the language 

was Python.

5. Data Analysis 

The temporal gait parameters include the right step 

time, left step time, right stride time, left stride time, 

cadence, double limb support (%), single limb support 

(%), left stance phase (%), left swing phase (%), right 

stance phase (%), and right swing phase (%). Statistical 

analysis was performed using MedCalc version 19.3 

(MedCalc Software Ltd, Belgium). All measured data 

were expressed by their mean and standard deviation (SD). 
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The level of agreement between motion capture using 

an infrared camera and a wearable inertial sensor-based 

gait analysis device was analyzed using an in-class 

correlation coefficient (ICC [2, 1]) [21]. The coefficient 

of variation (CV) described by Bland and Altman, and 

95% limits of agreement (LOA) were calculated to 

compare absolutely the parameters obtained in both 

sessions [23]. The CV values   between the results obtained 

through the two devices were converted to percentages 

by calculating the CV obtained using the SD of the 

difference score (Sd) (ME = Sd / √2, CVME = 2ME 

/ (X1 + X2) × 100%). The ICC’s point estimates were 

rated excellent (0.9 to 1), good (0.74 to 0.9), moderate 

(0.4 to 0.73), and poor (0 to 0.39). The statistical 

significance was set to p <0.05 for all procedures.

   

Ⅲ. Results

Table 1 lists the level of agreement between the infrared 

camera and IMU with machine learning for each gait 

variable. For normal speed, the ICCs for the temporal 

gait parameters were excellent (ICC [2, 1], 0.99∼0.99). 

The CV values were very small for all gait parameters 

(0.31∼1.08%) (Table 1). For slow speed, the ICCs for 

the temporal gait parameters were also excellent (ICC 

[2, 1], 0.98∼0.99). The error values for the coefficients 

of variation method were very small for all gait parameters 

(0.33∼1.24%) (Table 2). For fast speeds, the ICCs for 

temporal gait parameters were excellent (ICC [2, 1], 0.86

∼0.99) but at fast speeds, the ICCs were of a lower 

standard than those at the other speeds. The error values 

for the coefficients of variation method were small for 

all gait parameters (0.17∼5.58%) (Table 3). Scatter plots 

and Bland-Altman plots of the main spatial and temporal 

gait parameters obtained from the infrared camera against 

the IMU with machine learning are presented in Fig. 2.

Ⅳ. Discussion

In this study, we developed a wearable inertial 

sensor-based gait analysis device using a machine learning 

algorithm and confirmed the validity of the temporal gait 

parameters’ evaluation. Many errors have been caused 

in using the data obtained from the wearable inertial sensor 

Gait parameter IR camera IMU ICC CV% 95% LOA

Right step time (sec) 0.57 ± 0.03 0.57 ± 0.03 0.99 0.49 0.99 to 0.99

Left step time (sec) 0.56 ± 0.03 0.56 ± 0.03 0.99 0.45 0.99 to 0.99

Right stride time (sec) 1.12 ± 0.06 1.12 ± 0.06 0.96 0.65 0.91 to 0.98

Left stride time (sec) 1.13 ± 0.07 1.13 ± 0.07 0.99 0.31 0.99 to 0.99

Cadence (times) 106.41 ± 5.98 106.62 ± 6.00 0.99 0.31 0.99 to 0.99

DLS (%) 32.29 ± 3.21 32.23 ± 3.24 0.99 1.08 0.98 to 0.99

SLS (%) 33.80 ± 1.57 33.82 ± 1.53 0.99 0.46 0.98 to 0.99

Left stance phase (%) 66.79 ± 1.70 66.74 ± 1.65 0.98 0.43 0.96 to 0.99

Left swing phase (%) 33.21 ± 1.70 33.26 ± 1.65 0.98 0.82 0.96 to 0.99

Right stance phase (%) 66.35 ± 1.69 66.35 ± 1.72 0.98 0.46 0.96 to 0.99

Right swing phase (%) 33.65 ± 1.69 33.65 ± 1.72 0.98 0.87 0.96 to 0.99

ICC: intra correlation coefficient, CV: coefficients of variation, LOA: limits of agreement, SLS: single limb support, DLS: 

double limb support

Table 1. Level of agreement of the temporal gait parameters for subjects at normal speed
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which attached to one side of the pelvis for evaluating 

gait parameter. However, using the machine learning 

technique produced a lower error rate and the utility of 

this equipment for gait analysis was confirmed.     

Machine learning techniques have the potential to 

process nonlinearity more efficiently and are easier to 

implement than assumption-laden traditional methods and 

linear modeling, thereby demonstrating higher 

performance. Among the various machine learning 

techniques, artificial neural networks have been utilized 

to detect very accurately the stance-swing phase that 

cannot be effected with traditional methods such as peak 

and valley detection (Rhudy & Mahoney, 2018). The 

machine learning technique used in this study for the 

regression machine learning model, The Gradient 

Boosting Algorithm, is one of the tree-based machine 

Gait parameter IR Camera IMU ICC CV% 95% LOA

Right step time (sec) 0.71 ± 0.09 0.71 ± 0.09 0.99 0.56 0.99 to 0.99

Left step time (sec) 0.70 ± 0.08 0.70 ± 0.08 0.99 0.56 0.99 to 0.99

Right stride time (sec) 1.40 ± 0.17 1.40 ± 0.17 0.99 0.43 0.99 to 0.99

Left stride time (sec) 1.41 ± 0.17 1.41 ± 0.17 0.99 0.40 0.99 to 0.99

Cadence (times) 86.27 ± 9.51 86.45 ± 9.54 0.99 0.39 0.99 to 0.99

DLS (%) 36.62 ± 3.41 36.22 ± 3.30 0.99 1.24 0.95 to 0.99

SLS (%) 31.55 ± 1.74 31.79 ± 1.67 0.98 0.86 0.93 to 0.99

Left stance phase (%) 68.88 ± 1.73 68.66 ± 1.71 0.98 1.17 0.95 to 0.99

Left swing phase (%) 31.12 ± 1.73 31.34 ± 1.71 0.98 0.86 0.95 to 0.99

Right stance phase (%) 68.46 ± 1.81 68.28 ± 1.73 0.99 0.33 0.96 to 0.99

Right swing phase (%) 31.54 ± 1.81 31.72 ± 1.73 0.99 0.75 0.96 to 0.99

ICC: intra correlation coefficient, CV: coefficients of variation, LOA: limits of agreement, SLS: single limb support, DLS: 

double limb support

Table 2. Level of agreement of the temporal gait parameters for subjects at slow speed

Gait parameter IR Camera IMU ICC CV% 95% LOA

Right step time (sec) 0.51 ± 0.04 0.51 ± 0.04 0.99 0.98 0.98 to 0.99

Left step time (sec) 0.51 ± 0.03 0.51 ± 0.03 0.98 0.97 0.97 to 0.99

Right stride time (sec) 1.00 ± 0.06 1.00 ± 0.06 0.99 0.17 0.99 to 0.99

Left stride time (sec) 1.01 ± 0.07 1.01 ± 0.07 0.95 0.39 0.90 to 0.98

Cadence (times) 119.35 ± 8.20 119.10 ± 8.17 0.99 0.34 0.99 to 0.99

DLS (%) 29.76 ± 4.82 29.31 ± 3.56 0.86 5.58 0.70 to 0.93

SLS (%) 35.31 ± 1.89 35.24 ± 1.84 0.99 0.51 0.98 to 0.99

Left stance phase (%) 65.18 ± 1.91 65.26 ± 1.83 0.99 0.29 0.98 to 0.99

Left swing phase (%) 34.82 ± 1.91 34.74 ± 1.83 0.99 0.55 0.98 to 0.99

Right stance phase (%) 64.84 ± 2.07 64.82 ± 2.05 0.99 0.43 0.97 to 0.99

Right swing phase (%) 35.16 ± 2.07 35.18 ± 2.05 0.99 0.79 0.97 to 0.99

ICC: intra correlation coefficient, CV: coefficients of variation, LOA: limits of agreement, SLS: single limb support, DLS: 

double limb support

Table 3. Level of agreement of the temporal gait parameters for subjects at fast speed
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learning algorithms, used to create a predictive model 

for regression analysis. It is a prediction model that 

performs regression analysis or classification analysis and 

among the ensemble methodologies belongs to the 

boosting series of prediction models that perform variable 

selection and have the advantage of being computationally 

fast and easy to use. Known as AdaBoost, it was first 

proposed by Freund and Schapire (1996), is widely used, 

and exhibits high prediction accuracy. In the case of 

Gradient Boosting, there is no need to standardize or 

normalize the features. In particular, it shows excellent 

performance in predicting the results using the tabular 

form of standardized data (matrix data) (Gonzalez-Recio 

et al., 2013).     

The significance of using machine learning in this 

experiment is not simply comparing the agreement with 

the motion analyzer, but finding a meaningful signal 

through machine learning and recognizing it as a gait 

among the many significant signals that come into the 

sensor attached to one side of the pelvis. Polturi et al 

Fig. 2. Relationship between infrared camera and IMU with machine learning for main temporal gait parameters in

speed changes.
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(Potluri et al., 2019) also tried to build an automated gait 

parameter estimation system related to gait analysis 

applications in various fields such as clinical and sports 

using machine learning in gait analysis. To further 

illustrate, machine learning provides timely access to 

accurate and reliable knowledge of a person’s gait 

characteristics and provides an opportunity to track 

progress or decrease in gait quality, enabling early 

diagnosis of gait-related pathologies. And can help you 

find the right treatment for illness. 

In the study of Sebastijan and Matjaz (Sprager & Juric, 

2015) suggested a new model of machine learning. The 

group-based model, which is the same method as in this 

study, may be effective in identifying clinically relevant 

differences in gait between individuals, but it is difficult 

or unrealistic to test a large number of experimenters or 

some clinical groups. Therefore, it is said that it is possible 

to identify gait patterns using a subject-specific model 

and track changes within a single patient. It is said that 

using this model has the advantage of defining the current 

state of the subject’s gait pattern and identifying changes 

or outliers in the original pattern. 

In the results of this study, the ICC for DLS was the 

lowest with 86.46, which is different from other studies 

that directly attached the sensor to the ankle (Donath et 

al., 2016; Teufl et al., 2018), attaching the sensor to the 

pelvis (middle between ASIS and the navel). In these 

studies, the difference was most pronounced when 

measuring slow gait, which is why sensors that were not 

directly attached to the skin would have more movement 

at a slower pace. In our experiment, this may be because 

there will be fewer signals coming into the sensor during 

the DLS period when both legs are touching the ground. 

Several studies have been conducted using wearable 

inertial sensors and the placement of the device has varied 

from the head (Menz et al., 2003), to the wrist, ankle, 

waist (Park et al., 2016), and shin (Howcroft et al., 2016). 

The most common attachment location has been at lumbar 

L3-L5 approximately at the center of mass (Auvinet et 

al., 2002; Menz et al., 2003; Senden et al., 2012) In this 

experiment, it was designed to be attached centrally at 

the waistline between the navel and ASIS without a strap 

for ease of use during daily activities. 

The limitation of this study was that the experiment 

was conducted only for normal adults without spatial gait 

parameters. It is necessary to extend the validity of these 

findings by conducting research on participants with 

various diseases and from varying age groups.

Ⅴ. Conclusion

In conclusion, this study revealed the validity of the 

wearable inertial sensor on temporal parameters for gait 

analysis. It is thought that gait analysis will be more 

convenient under various conditions through a cost- 

effective wearable inertial sensor. Therefore, this new 

method provides an objective and evidence-informed way 

for effectively integrating machine learning and wearable 

technology to analyze human movement patterns to give 

and understand clinically important meanings.
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