DOI QR코드

DOI QR Code

Measurement uncertainty analysis of radiophotoluminescent glass dosimeter reader system based on GD-352M for estimation of protection quantity

  • Kim, Jae Seok (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Byeong Ryong (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Yoo, Jaeryong (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Ha, Wi-Ho (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Jang, Seongjae (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Jang, Won Il (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Cho, Gyu Seok (Research Team of Radiological Physics & Engineering, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Hyun (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Chang, Insu (Radiation Safety Management Division, Korea Atomic Energy Research Institute) ;
  • Kim, Yong Kyun (Department of Nuclear Engineering, University of Hanyang)
  • Received : 2021.03.09
  • Accepted : 2021.08.10
  • Published : 2022.02.25

Abstract

At the Korea Institute of Radiological and Medical Sciences, physical human phantoms were developed to evaluate various radiation protection quantities, based on the mesh-type reference computational phantoms of the International Commission on Radiological Protection. The physical human phantoms were fabricated such that a radiophotoluminescent glass dosimeter (RPLGD) with a Tin filter, namely GD-352M, could be inserted into them. A Tin filter is used to eliminate the overestimated signals in low-energy photons below 100 keV. The measurement uncertainty of the RPLGD reader system based on GD-352M should be analyzed for obtaining reliable protection quantities before using it for practical applications. Generally, the measurement uncertainty of RPLGD systems without Tin filters is analyzed for quality assurance of radiotherapy units using a high-energy photon beam. However, in this study, the measurement uncertainty of GD-352M was analyzed for evaluating the protection quantities. The measurement uncertainty factors in the RPLGD include the reference irradiation, regression curve, reproducibility, uniformity, energy dependence, and angular dependence, as described by the International Organization for Standardization (ISO). These factors were calculated using the Guide to the Expression of Uncertainty in Measurement method, applying ISO/ASTM standards 51261(2013), 51707(2015), and SS-ISO 22127(2019). The measurement uncertainties of the RPLGD reader system with a coverage factor of k = 2 were calculated to be 9.26% from 0.005 to 1 Gy and 8.16% from 1 to 10 Gy. A blind test was conducted to validate the RPLGD reader system, which demonstrated that the readout doses included blind doses of 0.1, 1, 2, and 5 Gy. Overall, the En values were considered satisfactory.

Keywords

Acknowledgement

This study was supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT (MSIT), Republic of Korea (No. 74320209). This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS), granted financial resource support from the Nuclear Safety and Security Commission (NSSC), Republic of Korea (No. 1803014).

References

  1. D. Borrego, C.M. Kitabara, S. Balter, C. Yoder, Occupational doses to medical staff performing or assisting with fluoroscopically guided interventional procedures, Radiology 294 (2020) 353-359, https://doi.org/10.1148/radiol.2019190018.
  2. T. Kairn, R. Wilks, L. Yu, C. Lancaster, S.B. Crowe, In vivo monitoring of total skin electron dose using optically stimulated luminescence dosimeters, Rep. Practical Oncol. Radiother. 25 (2020) 35-40, https://doi.org/10.1016/ j.rpor.2019.12.011. Pubmed:31889918.
  3. J.D. Cho, J.S. Son, J. Sung, C.H. Choi, J.S. Kim, H.G. Wu, J.M. Park, J.I. Kim, Flexible film dosimeter for in vivo dosimetry, Med. Phys. 47 (2020) 3204-3213, https://doi.org/10.1002/mp.14162. Pubmed:32248523.
  4. J.F. Winslow, D.E. Hyer, R.F. Fisher, C.J. Tien, D.E. Hintenlang, Construction of anthrompomorphic phantoms for use in dosimetry studies, J. Appl. Clin. Med. Phys. 10 (2009) 195-204, https://doi.org/10.1120/jacmp.v10i3.2986. Pubmed:19692982.
  5. S. Hashim, M.K.A. Karim, K.A. Bakar, A. Sabarudin, A.W. Chin, M.I. Saripan, D.A. Bradley, Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom, Radiat. Phys. Chem. 126 (2016) 14-20, https://doi.org/10.1016/j.radphyschem.2016.05.004.
  6. S. Tongkum, P. Suwanpradit, S. Vidhyarkorn, S. Siripongsakun, S. Oonsiri, Y. Rakvongthai, K. Khamwan, Determination of radiation dose and low-dose protocol for digital chest tomosynthesis using radiophotoluminescent (RPL) glass dosimeters, Phys. Med. 73 (2020) 13-21, https://doi.org/10.1016/j.ejmp.2020.03.024. Pubmed:32279046.
  7. P. Wolowiec, P.F. Kukolowicz, The analysis of the measurement uncertainty with application of small detectors made of Gafchromic EBT3 films for the range of doses typical for in vivo dosimetry in teleradiotherapy, Radiat. Meas. 92 (2016) 72-79, https://doi.org/10.1016/j.radmeas.2016.08.001.
  8. S.T. Chiu-Tsao, Y. Ho, R. Shankar, L. Wang, L.B. Harrison, Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage radiation energies, Med. Phys. 32 (2005) 3350-3354, https://doi.org/10.1118/1.2065467. Pubmed: 16370422.
  9. G. Massillon-Jl, S.-T. Chiu-Tsao, I. Domingo-Munoz, M.F. Chan, Energy dependence of the new Gafchromic EBT33 film: dose response curves for 50 kV, 6 and 15 MV X-ray beams, Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 1 (2012) 60-65, https://doi.org/10.4236/ijmpcero.2012.12008.
  10. E.Y. Marroquin, J.A. Herrera Gonzalez, M.A. Camacho Lopez, J.E. Barajas, O.A. Garcia-Garduno, Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density, J. Appl. Clin. Med. Phys. 17 (2016) 466-481, https://doi.org/10.1120/jacmp.v17i5.6262. Pubmed: 27685125.
  11. K. Venables, E.A. Miles, E.G.A. Aird, et al., The use of in vivo thermoluminescent dosimeters in the quality assurance programme for the START breast fractionation trial, Radiother. Oncol. 71 (2004) 303-310, https://doi.org/10.1016/j.radonc.2004.02.008. Pubmed: 15172146.
  12. A.M. Costa, G.L. Barbi, E.C. Bertucci, H. Ferreira, S.Z. Sansavino, B. Colenci, L.V.E. Caldas, In vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy, Appl. Radiat. Isot. 68 (2010) 760-762, https://doi.org/10.1016/j.apradiso.2009.09.039. Pubmed: 19819151.
  13. P.E. Wesolowska, A. Cole, T. Santos, T. Bokulic, P. Kazantsev, J. Izewska, Characterization of three solid state dosimetry systems for use in high energy photon dosimetry audits in radiotherapy, Radiat. Meas. 106 (2017) 556-562, https://doi.org/10.1016/j.radmeas.2017.04.017.
  14. L. Duggan, M. Budzanowski, K. Przegietka, N. Reitsema, J. Wong, T. Kron, The light sensitivity of thermoluminescent materials: LiF:Mg,Cu,P, LiF:Mg,Ti and Al2O3:C, Radiat. Meas. 32 (2000) 335-342, https://doi.org/10.1016/S1350-4487(00)00048-2.
  15. K. Son, H. Jung, S.H. Shin, H.-H. Lee, M.-S. Kim, Y.H. Ji, K.B. Kim, Evaluation of the dosimetric characteristics of a radiophotoluminescent glass dosimeter for high-energy photon and electron beams in the field of radiotherapy, Radiat. Meas. 46 (2011) 1117-1122, https://doi.org/10.1016/j.radmeas.2011.08.021.
  16. J.E. Rah, S. Kim, K.H. Cheong, J.W. Lee, J.B. Chung, D.O. Shin, T.S. Suh, Feasibility study of radiophotoluminescent glass rod dosimeter postal dose intercomparison for high energy photon beam, Appl. Radiat. Isot. 67 (2009) 324-328, https://doi.org/10.1016/j.apradiso.2008.09.018. Pubmed: 19038552.
  17. F. Araki, N. Moribe, T. Shimonobou, Y. Yamashita, Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and Cyber-Knife, Med. Phys. 31 (2004) 1980-1986, https://doi.org/10.1118/1.1758351. Pubmed: 15305450.
  18. P. Oonsiri, S. Kingkaew, et al., Investigation of the dosimetric characteristics of radiophotoluminescent glass dosimeter for high-energy photon beams, J. Radiat. Res. Appl. Sci. 12 (2019) 65-71, https://doi.org/10.1080/16878507.2019.1594092.
  19. S.-M. Hsu, H.-W. Yang, T.-C. Yeh, W.-L. Hsu, C.-H. Wu, C.-C. Lu, W.-L. Chen, D.Y.C. Huang, Synthesis and physical characteristics of radiophotoluminescent glass dosimeters, Radiat. Meas. 42 (2007) 621-624, https://doi.org/10.1016/j.radmeas.2007.01.053.
  20. International Organization for Standardization (ISO), Uncertainty of Measurement. Guide Expression of Uncertainty in Measurement (GUM:1995), 2008 [ISO/IEC GUIDE 98-3].
  21. S.M. Hsu, C.Y. Yeh, T.C. Yeh, J.H. Hong, A.Y.H. Tipton, W.L. Chen, S.S. Sun, D.Y.C. Huang, Clinical application of radiophotoluminescent glass dosimeter for dose verification of prostate HDR procedure, Med. Phys. 35 (2008) 5558-5564, https://doi.org/10.1118/1.3005478. Pubmed: 19175113.
  22. International Organization for Standardization (ISO), Absorbed Dose Determination in External Beam Radiotherapy: an International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, vol. 398, IAEA TRS, 2006.
  23. International Organization for Standardization (ISO), Practice for Calibration of Routine Dosimetry Systems for Radiation Processing, vol. 51261, ISO/ASTM, 2013.
  24. International Organization for Standardization (ISO), Guide for Estimation of Measurement Uncertainty in Dosimetry for Radiation Processing, vol. 51707, ISO/ASTM, 2015.
  25. International Organization for Standardization (ISO), Dosimetry with Radio-photoluminescent Glass Dosimeters for Dosimetry Audit in MV X-Ray Radiotherapy, SS/ISO 22127, 2019.
  26. Y. Hashimoto, N. Kadoya, K. Abe, K. Karasawa, Energy dependence of a radio-photoluminescent glass dosimeter for HDR 192Ir brachytherapy source, Med. Phys. 46 (2019) 964-972, https://doi.org/10.1002/mp.13319.
  27. S.K. Lee, I. Chang, S.I. Kim, J. Lee, H. Kim, J.-L. Kim, M.C. Kim, Reference X-ray irradiation system for personal dosimeter testing and calibration of radiation detector, J. Radiat. Prot. Res. 44 (2019) 72-78, https://doi.org/10.14407/jrpr.2019.44.2.72.
  28. International Organization for Standardization (ISO), Conformity Assessment - General Requirements for Proficiency Testing, 2010. ISO/IEC 17043.