• Title/Summary/Keyword: Physical Element

Search Result 1,131, Processing Time 0.025 seconds

Athermal Elastomeric Lens Mount for Space Optics

  • Kihm, Hag-Yong;Yang, Ho-Soon;Moon, Il-Kweon;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.201-205
    • /
    • 2009
  • We investigated the optimum adhesive thickness for athermalizing an elastomeric lens mount in our space optics application. Theoretical results were compared with finite element solutions using two different models; discrete circular pads and discrete circular pads with columns filling the insertion holes reflecting the reality. A noticeable difference between their optimal thicknesses was observed, and physical interpretation revealed the uncertainty of prevailing athermal equations. A pilot sample was made to check our results and thermo-optical stress was assessed using an interferometer after isothermal load. This study presented insight into preliminary design guidance in elastomeric lens mounting.

Study on the flow inside an annular pipe with a periodic obstacle (주기적인 장애물을 가지는 환형 도관 내의 유동장에 대한 연구)

  • Ahn, Young-Kyoo;Choi, Hyoung-G.;Yong, Ho-Taek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.209-211
    • /
    • 2008
  • In this paper, a segregated finite element program for the analysis of an axisymmetric steady flow has been developed in order to investigate the flow inside an annular pipe with a periodic obstacle. For the verification of the developed code, a developing pipe flow has been solved and the solution is in a good agreement with the existing results. For the analysis of the flow inside an annular pipe with a periodic obstacle, three types of periodic obstacle are considered. From the present numerical analysis, various physical variables including flow pattern, pressure distribution and residence time are investigated as a preliminary study to the heat transfer analysis of an annular pipe flow with a periodic obstacle.

  • PDF

Comparison of Homogenization Techniques in Magnetostatic Field Problems (정자장 문제의 균질화 기법의 비교)

  • Choi, Jae-Seok;Yoo, Jeong-Hoon;Nishiwaki, Shinji;Terada, Kenjiro
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.388-394
    • /
    • 2007
  • Many engineering problems require the calculation of effective material properties of a structure which is composed of repeated micro-structures. The homogenization method has been used to calculate the effective (homogenized) properties of composites and several homogenization procedures for different physical fields have been introduced. This research describes the modified homogenization technique for magnetostatic problems. Assuming that the material is periodically repeated, its effective permeability can be prescribed by calculating the homogenized magnetic reluctivity using the finite element analysis of the micro unit cell. Validity of the suggested method is confirmed by comparing the results by the energy based method as well as the widely known homogenization method.

The Design Development of Training Suit for Obese Children (비만아동의 트레이닝복 디자인 개발)

  • Kim, Nam-Hee;Choi, Yoon-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.1
    • /
    • pp.35-44
    • /
    • 2008
  • The research is purposed to help obese children to recover their physical, spiritual inferiority complex and it give them to affirmative self formation by developing training-suit which has slender effect. In order to accomplish a research problem, this research examined the effect of wearer's outward appearance with the principle and element of design and the characteristics of obesity. In order to apply consumer's demand to developing goods, this research used 'House of quality' theory. The design ten suits(the half are made for boys) development is based on the result of 'House of quality', parents and obese children's interview, design element, slender effect. The design which is developed is evaluated by five specialists in order to prove it's quality though the 'Quad' analysis which is a subjective evaluation method.

Automated CAE Evaluation of Electrostatic Micro Actuator (정전 마이크로 액츄에이터의 자동 CAE 평가)

  • Lee, Joon-Seong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.711-715
    • /
    • 1996
  • This paper describes an automated computer-aided engineering (CAE) system for micromachines whose size range 10 to 10$^3$${\mu}{\textrm}{m}$. An automatic finite element mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with one of commercial finite clement (FE) analysis codes, MARC, and one of commercial solid modelers, Designbase. The system allows a geometry model of concern to be a automatically converted to different FE models, depending on physical phenomena to be analyzed, i.e. electrostatic analysis, stress analysis, modal analysis and so on. The FE analysis models are then exported to the FE analysis code, and then analyses are performed. This system is successfully applied to an electrostatic micro actuator.

  • PDF

Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product (신경망을 이용한 열간단조품의 초기 소재 설계)

  • 김동진;김벙민;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.198-203
    • /
    • 1995
  • In the paper, we have proposed a new technique to detemine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed totrain the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energyas well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of te neural network. The amount of incomplete filling in the die, load and forming energyas well as effective strain are measured by the rigid-plastic finite element method. The new technique is applied tofind the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determing the optimal billet of forging products, further it is usefully adapted to physical modeling for the forging design.

  • PDF

A comparison of the transmission losses of two-dimensional dissipative silencers predicted by analytical method and BEM (이론적 해 및 경계요소법에 의한 2차원 흡음형 소음기의 전달 손실치 예측 비교)

  • 김회전;이정권;정지훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1001-1004
    • /
    • 2002
  • Accurate prediction of the transmission loss of dissipative silencers has been considered difficult due to the ambiguity and complexity in the physical properties of sound absorbing materials. Additional difficulty lies in the fact that the analytical calculation of the propagation constant is unknown yet. In this paper. as a first step toward obtaining the Propagation constant and thus predicting the transmission loss, an approximation equation stemming from the wave analysis in the lined interior has been derived. Such an analytical solution and numerical solution using the boundary element method are compared for a two-dimensional simple dissipative silencer under the assumption of the locally reacting sound absorbent.

  • PDF

A Study on the Characteristics of Synaptic Multiplication for SONOSFET Memory Devices (SONOSFET 기억소자의 시랩스 승적특성에 관한 연구)

  • 이성배;김병철;김주연;이상배;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.1-4
    • /
    • 1996
  • EEPROM technology has been used for storing analog weights as charge in a nitride layer between gate and channel of a field effect transistor. In the view of integrity and fabrication process, it is essentially required that SONOSFET is capable of performing synapse function as a basic element in an artificial neural networks. This work has introduced the VLSI implementation for synapses including current study and also investigated physical characteristics to implement synapse circuit using SONOSFET memories. Simulation results are shown in this work. It is proposed that multiplication of synapse element using SONOSFET memories will be developed more compact implementation under Present fabrication processes.

  • PDF

Fiber Optic Security System based on Multimode Fiber (광파이비를 이용한 침입자 감시시스템)

  • Kim, Y.H.;Kim, I.S.;Park, H.S.;Oh, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1887-1889
    • /
    • 1997
  • This paper reports the principle, design, configuration, and test results of the fiber optic security system using multimode fiber. In this system, optical fiber works as a sensing element. The length of sensing element may be from several meters to several killometers. Physical principle of this system is the dependence of interferometric pattern on the end of the fiber on mechanical perturbation in the area, where this fiber is situated. Near and far field patterns of the output light for multimode fiber are speckle pattern. A number of speckles on the fiber depends on mode numbers. Light intensity in each point of the fiber end depends on phase difference of modes. Finally we introduced a "Fiber Optic Security System based on Multimode" Fiber which we developed, it may be available in the field of the important area and building.

  • PDF

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF