• Title/Summary/Keyword: Physical Decontamination

Search Result 17, Processing Time 0.018 seconds

The effects of physical decontamination methods on zirconia implant surfaces: a systematic review

  • Tan, Nathan Chiang Ping;Khan, Ahsen;Antunes, Elsa;Miller, Catherine M;Sharma, Dileep
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.298-315
    • /
    • 2021
  • Purpose: Peri-implantitis therapy and implant maintenance are fundamental practices to enhance the longevity of zirconia implants. However, the use of physical decontamination methods, including hand instruments, polishing devices, ultrasonic scalers, and laser systems, might damage the implant surfaces. The aim of this systematic review was to evaluate the effects of physical decontamination methods on zirconia implant surfaces. Methods: A systematic search was conducted using 5 electronic databases: Ovid MEDLINE, PubMed, Scopus, Web of Science, and Cochrane. Hand searching of the OpenGrey database, reference lists, and 6 selected dental journals was also performed to identify relevant studies satisfying the eligibility criteria. Results: Overall, 1049 unique studies were identified, of which 11 studies were deemed suitable for final review. Air-abrasive devices with glycine powder, prophylaxis cups, and ultrasonic scalers with non-metal tips were found to cause minimal to no damage to implantgrade zirconia surfaces. However, hand instruments and ultrasonic scalers with metal tips have the potential to cause major damage to zirconia surfaces. In terms of laser systems, diode lasers appear to be the most promising, as no surface alterations were reported following their use. Conclusion: Air-abrasive devices and prophylaxis cups are safe for zirconia implant decontamination due to preservation of the implant surface integrity. In contrast, hand instruments and ultrasonic scalers with metal tips should be used with caution. Recommendations for the use of laser systems could not be fully established due to significant heterogeneity among included studies, but diode lasers may be the best-suited system. Further research-specifically, randomised controlled trials-would further confirm the effects of physical decontamination methods in a clinical setting.

토양 제염에 있어서 magnetite 용해 거동 연구

  • 원휘준;김민길;김계남;박진호;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.393-396
    • /
    • 2003
  • Soil contains the several kinds of metal oxides. Magnetite in soil may contribute the generation of secondary waste during the decontamination of soil by citric acid. Dissolution of magnetite powders by citric acid was investigated in the pH range between 2.0 and 5.0. The dissolution behaviour of magnetite was well described by the equation, A[1 - $e^{-B(x-c)}$]. The parameters of the equation were optimized by the iteration method, and the physical meaning of each parameter was explained. Concentration of each of the dissociated chemical species of citric acid was calculated using the ionization constants. The dissolution reaction was explained by the concentration of the dissociated chemical species of citric acid.d.

  • PDF

A Study on the Application of EXPERT-CHOICE Technique for Selection of Optimal Decontamination Technology for Nuclear Power Plant of Decommissioning (원전 해체 시 최적 제염기술 선정을 위한 EXPERT-CHOICE 기법 적용에 대한 연구)

  • Song, Jong Soon;Shin, Seung Su;Lee, Sang Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • The present study researched and analyzed decontamination technology for decommissioning a nuclear power plant. The decision-making technique (EXPERT-CHOICE) was used to evaluate and select the optimal decontamination technology. In principle, this evaluation method is generally performed by a group of experts in the relevant field. The results of the weights were calculated by multiplying the weights with regard to each criterion and evaluation score. The evaluation scores were categorized into 3 ranges (high, medium, and low), and each range was weighted for differentiation. The level of the technology analysis was improved by additionally quantifying the weights with regard to each criterion and subdividing criteria into subcriteria. The basic assumption of the evaluation was that the weight values would decided on in an expert survey and assigned to each criterion. The evaluation criteria followed high weight for the 'High' range. Accordingly, H, M, and L were assigned weights of 10:5:1, respectively. This was based on the EXPERT-CHOICE optimal analysis. The minimum and maximum values were excluded, and the average value was used as the evaluation value for each scenario.

Advancement of Clay and Clay-based Materials in the Remediation of Aquatic Environments Contaminated with Heavy Metal Toxic Ions and Micro-pollutants

  • Lalhmunsiama, Lalhmunsiama;Malsawmdawngzela, Ralte;Vanlalhmingmawia, Chhakchhuak;Tiwari, Diwakar;Yoon, Yiyong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.502-522
    • /
    • 2022
  • Clay minerals are natural materials that show widespread applications in various branches of science, including environmental sciences, in particular the remediation of water contaminated with various water pollutants. Modified clays and minerals have attracted the attention of researchers in the recent past since the modified materials are seemingly more useful and efficient for removing emerging water contaminants. Therefore, modified engineered materials having multi-functionalities have received greater interest from researchers. The advanced clay-based materials are highly effective in the remediation of water contaminated with organic and inorganic contaminants, and these materials show enhanced selectivity towards the specific pollutants. The review inherently discusses various methods employed in the modification of clays and addresses the challenges in synthesizing the advanced engineered materials precursor to natural clay minerals. The changes in physical and chemical properties, as investigated by various characterization techniques before and after the modifications, are broadly explained. Further, the implications of these materials for the decontamination of waterbodies as contaminated with potential water pollutants are extensively discussed. Additionally, the insights involved in the removal of organic and inorganic pollutants are discussed in the review. Furthermore, the future perspectives and specific challenges in the scaling up of the treatment methods in technology development are included in this communication.

Implementation of an Architecture for the Dismantling Digital Mock-up System (해체 디지털목업시스템 아키텍쳐 구현)

  • Park Hee-Seoung;Kim Sung-Kyun;Lee Kune-Woo;Oh Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.237-247
    • /
    • 2005
  • It is necessary to forecast the various dismantling activities prior to dismantling nuclear facilities by using various software instead of a physical mock-up system because the dismantling in a contaminated with radioactivity cause the results of an unexpected situation. The component that needs to develop a dismantling mock-up system was examined. There are many component systems such as a decommissioning database system,3D dosimetric mapping that represents a distribution of a radionuclide contamination, a component of modeling for nuclear facility and devices include the decontamination and decommissioning. The research of software architecture about these components was carried out because these component systems that have been independently doesn't describe not only to visual an activities of Decontamination and Decommissioning(D&D) but also to evaluate it. The result was established an architecture that consist of an visualization module which could be visualized an D&D activities and a simulation module which can be evaluated a dismantling schedule and decommissioning cost.

  • PDF

A Study on the Removal Characteristics of a Radioactively Contaminated Oxide Film from the irradiated Stainless Steel Surface using Short Pulsed Laser Ablation (초단 펄스레이저 어블레이션에 의한 스테인리스강 표면의 오염산화막 제거 특성)

  • Kim, Geun-Woo;Yoon, Sung-Sik;Kim, Ki-Chul;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.105-110
    • /
    • 2020
  • Radioactive Oxides are formed on the surface of the primary equipment in a nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the equipment, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce production of the secondary radioactive wastes. They were also used to minimize the damages that were caused on the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Further, the laser source was selected with two different wavelengths. Furthermore, the depth of the coating layer was analyzed using a 3D laser microscope by changing the laser ablation conditions. Based on the analysis, the optimal conditions of ablation were determined using a 1064nm short-pulsed laser ablation technique in order to remove the radioactively contaminated oxide film from the irradiated stainless steel surface.

Radiation Measurements at Fukushima Medical University over a Period of 12 Years Following the Nuclear Power Plant Accident

  • Ryo Ozawa
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • Background: Fukushima Medical University (FMU) is located 57 km northwest of the Fukushima Daiichi Nuclear Power Plant. Our laboratory has been conducting environmental radiation measurements continuously before and after the nuclear accident. We aimed to report the observed behavior of radiation originating from the released radioactive materials due to the accident, predict future trends, and disseminate the results to the local residents. Materials and Methods: Measurements of the counting rate by a diameter of 76 mm and a length of 76 mm thallium-doped sodium iodide (NaI[Tl]) scintillation detector (S-1211-T; Teledyne Brown Engineering Environmental Services) in the central part of the laboratory, and the dose rate outward at the window by NaI(Tl) scintillation detector and digital processor (EMF211; EMF Japan Co. Ltd.) were conducted. Results and Discussion: Measurements by Teledyne S-1211-T showed that in the early stages, radiation from radioactive isotopes with short half-lives was dominant, while radiation from radioactive isotopes with longer half-lives became dominant as the measurement period became longer. Through nonlinear least squares regression, both short and long half-lives were successfully determined. It was also possible to predict how the radiation dose would decrease. The environmental radiation trends around FMU were measured by the EMF211. Both measurements were affected by rainfall and snow accumulation. Decontamination work on the FMU campus impacted measurements by the EMF211 especially. Conclusion: The results of two types of measurements, one at the center and the other at the window side of the laboratory, were presented. By applying a simplified model, radiation from radioactive isotopes with short and long half-lives was identified. Based on these results, future trends were predicted, and the information was used for public communication with the local residents.

Options Manageing for Radioactive Metallic Waste From the Decommissioning of Kori Unit 1 (고리1호기 해체시 발생할 방사성금속폐기물 관리 옵션 연구)

  • Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • The purpose of this paper is to evaluate several leading options for the management of radioactive metallic waste against a set of general criteria including safety, cost effectiveness, radiological dose to workers and volume reduction. Several options for managing metallic waste generated from decommissioning are evaluated in this paper. These options include free release, controlled reuse, and direct disposal of radioactive metallic waste. Each of these options may involve treatment of the metal waste for volume reduction by physical cutting or melting. A multi-criteria decision analysis was performed using the Analytic Hierarchy Process (AHP) to rank the options. Melting radioactive metallic waste to produce metal ingots with controlled reuse or free release is found to be the most effective option.

Comprehensive Assessment on Risk Factors using Fuzzy Inference in Decommissioning Process (퍼지추론을 이용한 해체공정 중 리스크 요인의 통합 평가)

  • Lim, Hyeon Kyo;Kim, Hyunjung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.184-190
    • /
    • 2014
  • Decommissioning process of nuclear facilities consist of a sequence of problem solving activities, because there may exist not only working environments contaminated by radiological exposure but also industrial hazards such as fire, explosions, toxic materials, and electrical and physical hazards. Therefore, not a few countries in the world have been trying to develop appropriate counter techniques in order to guarantee safety and efficiency of the process. In spite of that, there still exists neither domestic nor international standard. Unfortunately, however, there are few workers who experienced decommissioning operations a lot in the past. As a solution, it is quite necessary to utilize experts' opinions for risk assessment in decommissioning process. As for an individual hazard factor, risk assessment techniques are getting known to industrial workers with advance of safety technology, but the way how to integrate those results is not yet. This paper aimed to find out an appropriate technique to integrate individual risk assessment results from the viewpoint of experts. Thus, on one hand the whole risk assessment activity for decommissioning operations was modeled as a sequence of individual risk assessment steps which can be classified into two activities, decontamination and dismantling, and on the other, a risk assessment structure was introduced. The whole model was inferred with Fuzzy theory and techniques, and a numerical example was appended for comprehension.

Dissolution Characteristics of Iron Ion in Soil by the Decontamination Solution (제염용액에 의한 토양 중 철 성분 용해 특성)

  • 원휘준;김계남;정종헌;최왕규;박진호;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.676-680
    • /
    • 2003
  • Dissolution of magnetite powders by 0.05 M citric acid was investigated at $50^{\circ}C$. All the tests were performed in the pH range between 2.0 to 5.0, which was adjusted using nitric acid or sodium hydroxide. Concentration of each of the dissociated chemical species of citric acid under various solution pHs was calculated using the ionization constants. Variation of zeta potential of magnetite with pH changes was also investigated. The dissolution reaction was explained by comparing the concentration of the dissociated chemical species of citric acid with the zeta potential. Longer than 3 h of induction time was required to dissolve the magnetite. The dissolution behaviour of magnetite was well described by the equation. The physical meaning of each parameter was explained successfully from the model equation.

  • PDF