• 제목/요약/키워드: Photovoltaic power generation system

검색결과 660건 처리시간 0.036초

태양광발전시스템의 효율적 운용과 관리를 위한 모니터링 및 제어 시스템 (Monitoring and Control System for Efficient Operating and Management of Photovoltaic Power Generation System)

  • 빈재구;강필순;김철우
    • 한국정보통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.532-539
    • /
    • 2007
  • 신재생 에너지 자원의 하나로 각광받고 있는 태양광발전시스템은 분산형 발전시스템으로서 설치 이후의 효율적인 시스템 관리와 운영이 중요한 문제로 대두되고 있다. 이러한 문제점을 해결할 수 있는 방법 중 하나는 원격 모니터링 및 제어 시스템을 적용하는 것이다. 본 논문에서는 태양광 발전 시스템의 효율적인 관리와 운용을 위한 LabVIEW 기반의 모니터링 및 제어시스템을 제안한다. 모니터링부와 태양광 인버터의 DSP(Digital Signal Processor) 제어기간의 인터페이스에 대하여 자세히 설명하고, 계통연계형 태양광발전시스템에 적용하여 제안된 시스템의 타당성을 검증한다.

철도인프라용 태양광발전시스템 확대를 위한 기상정보 활용 발전량 예측 비교 연구 (Comparative Study to Predict Power Generation using Meteorological Information for Expansion of Photovoltaic Power Generation System for Railway Infrastructure)

  • 유복종;박찬배;이주
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.474-481
    • /
    • 2017
  • 국내에서 태양광 발전설비 설계 시 설계 단계에서의 태양광발전소의 발전량 예측은 국내 현장임에도 불구하고 PVsyst, PVWatts 등 해외 발전량 예측 프로그램과 해외 기상 자료를 이용하여 발전량을 예측하는 경우가 대부분을 차지하고 있는 실정이다. 본 논문에서는 기상정보를 활용한 발전량 예측 비교 연구를 위하여 현재 운영중인 2개 지역의 국내 태양광발전소를 대상지로 선정하였다. 발전량 예측 프로그램인 PVsyst를 활용하여 Meteonorm 7.1과 NASA-SSE의 해외 기상정보를 이용한 발전량 예측값과 국내 기상청 (Korea Meteorology Administration) 기상정보를 활용한 발전량 예측 정확성을 비교하였다. 추가적으로, 기상자료 비교 분석을 통한 발전량 예측 개선 방안을 연구하고, 최종적으로 실제 발전량과의 비교 분석을 통해 기후요소가 고려된 태양광 발전량 예측 수정 모델을 제시하였다.

태양광발전 시스템의 일사량에 따른 전력 패턴 분석 (Analysis of Power Pattern According to Irradiation for Photovoltaic Generation System)

  • 이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.602-608
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. As I-V characteristics according to a temperature range of 10~50[$^{\circ}C$], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature. As output power characteristics according to a temperature range of 10~50[$^{\circ}C$], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power. As I-V characteristics according to a irradiation range of 100~900 [$W/m^2$], voltage and current were increased with an increase in irradiation. The result is thought of as an increase in output power with increasing irradiation. As output power characteristics according to a irradiation range of 100~900 [$W/m^2$], output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

On the Use of Maximum Likelihood and Input Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation

  • Fonseca Junior, Joao Gari da Silva;Oozeki, Takashi;Ohtake, Hideaki;Takashima, Takumi;Kazuhiko, Ogimoto
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1342-1348
    • /
    • 2015
  • The objective of this study is to propose a method to calculate prediction intervals for one-day-ahead hourly forecasts of photovoltaic power generation and to evaluate its performance. One year of data of two systems, representing contrasting examples of forecast’ accuracy, were used. The method is based on the maximum likelihood estimation, the similarity between the input data of future and past forecasts of photovoltaic power, and on an assumption about the distribution of the error of the forecasts. Two assumptions for the forecast error distribution were evaluated, a Laplacian and a Gaussian distribution assumption. The results show that the proposed method models well the photovoltaic power forecast error when the Laplacian distribution is used. For both systems and intervals calculated with 4 confidence levels, the intervals contained the true photovoltaic power generation in the amount near to the expected one.

태양광 시스템의 전 범위 전력점 추종을 위한 CPG 알고리즘에 관한 연구 (A Study on Constant Power Generation Algorithms for a Whole Range Power Point Tracking in Photovoltaic Systems)

  • 양형규;방태호;배선호;박정욱
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.111-119
    • /
    • 2019
  • In this study, constant power generation (CPG) algorithms are introduced for whole range power point tracking in photovoltaic systems. Currently, maximum power point tracking (MPPT) algorithm is widely used for high-power photovoltaic systems. However, MPPT algorithm cannot flexibly control such systems according to changing grid conditions. Maintaining grid stability has become important as the capacity of grid-connected photovoltaic systems is increased. CPG algorithms are required to generate the desired power depending on grid conditions. A grid-connected photovoltaic system is configured, and CPG algorithms are implemented. The performances of the implemented algorithms are compared and analyzed by experimental results.

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

A Novel Photovoltaic Power Generation System including the Function of Shunt Active Filter

  • Park, Minwon;Seong, Nak-Gueon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권2호
    • /
    • pp.103-110
    • /
    • 2003
  • With significant development of power electronics technology, the proliferation of nonlinear loads such as static power converters has deteriorated power quality in power transmission and distribution systems. Notably, voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many countries. Many photovoltaic power generation systems installed in building systems have harmonics that are the worst object for distribution systems as a utility interactive system, and it tends to spread out continuously. Proposed and implemented in this paper is a multi-function inverter control strategy that allows a shunt active filter function to the power inverter of the photovoltaic power generation system established on a building system. The effectiveness of the proposed system is demonstrated through the simulation of a hypothetical power system using PSCAD/EMTDC.

계통연계 태양광발전시스템의 제어기법 및 연계운전특성 (A control method and test results of utility interactive photovoltaic power generation systems)

  • 안교상;임희천;황인호;주형준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.549-553
    • /
    • 1999
  • This paper describes a design method of grid-connected photovoltaic power generation systems with three phase inverter. A 3-phase 50kW photovoltaic power generation system including a DC/AC inverter is designed and made in order to investigate the system performance for grid connection. Also the control scheme of a three phase current-controlled PWM inverter is presented by using d-q transformation. The experimental waveforms show that the proposed system has stable behavior with an unit power factor in utility-interactive operation.

  • PDF

독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구 (The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System)

  • 박세준;윤정필;강병복;윤형상;차인수;임중열
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발 (Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning)

  • 이승민;이우진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권10호
    • /
    • pp.353-360
    • /
    • 2016
  • 여러 개의 태양전지들이 붙어 있는 태양광 패널을 이용하여 전력을 생산하는 태양광 발전은 최근 신재생 에너지 기술로 빠르게 성장하고 있는 분야이다. 하지만 태양광발전의 단점 중 하나인 불규칙한 전력 생산문제로 인해, 장비 및 패널 결함에 빠르게 대응하지 못하는 문제가 발생한다. 이 연구에서는 다양한 기후데이터와 패널 정보를 이용하여 태양광발전량 예측 방법들을 비교하여 최적의 예측 알고리즘을 평가하고 이를 기반으로 태양광발전소 결함 검출 시스템을 개발하여 국내 태양광 발전소에 적용한 사례를 기술한다.