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Abstract – The objective of this study is to propose a method to calculate prediction intervals for one-
day-ahead hourly forecasts of photovoltaic power generation and to evaluate its performance. One year 
of data of two systems, representing contrasting examples of forecast’ accuracy, were used. The 
method is based on the maximum likelihood estimation, the similarity between the input data of future 
and past forecasts of photovoltaic power, and on an assumption about the distribution of the error of 
the forecasts. Two assumptions for the forecast error distribution were evaluated, a Laplacian and a 
Gaussian distribution assumption. The results show that the proposed method models well the 
photovoltaic power forecast error when the Laplacian distribution is used. For both systems and 
intervals calculated with 4 confidence levels, the intervals contained the true photovoltaic power 
generation in the amount near to the expected one. 
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1. Introduction 
 
Methods to forecast photovoltaic, PV, power generation 

are expected to fulfill an important role in the integration 
of PV systems on current power grids. This is due to the 
ability that such methods have to anticipate, eventual and 
strong variations of PV power generation, caused by 
changes in the weather. The information provided by PV 
power forecast methods can help power companies and 
users to prepare for such events. Many methods to forecast 
PV power generation have been proposed for different time 
and spatial scales [1-3]. Moreover, comprehensive reviews 
of several approaches also are available [4, 5]. 

Regardless the method and input data used, the strong 
dependence of PV power on weather conditions makes 
the realization of accurate forecasts in continuous 
fashion a difficult task. The problem becomes even acuter 
on locations with unstable weather and for time scales 
longer than a few hours. In this case, besides a value for 
the forecast of PV power generation, for a given time and 
location, it is interesting to have also information about the 
uncertainty of such forecast. Uncertainty can be expressed 
in several ways, and one of them is through the calculation 
of prediction intervals which are expected to contain a 
future point observation with a given confidence level. 

Thus, the objective of this study is to present a simple 

method to calculate prediction intervals for one-day-
ahead forecasts of power generation of single PV systems. 
The method is based on the use of the maximum likelihood 
estimation method, and on the concept of similarity 
between PV power forecasts for different hours and different 
days. 

To validate the method, it was applied to calculate 
prediction intervals, with different theoretical confidence 
levels, for 1 year of hourly forecasts of power generation of 
two PV systems installed in different locations in Japan. 
The forecasts of PV power were done using a method 
previously proposed [6], which was based on numerical 
weather prediction data and a support vector regression 
algorithm. The performance of the prediction intervals 
calculation method was verified analyzing the corres-
pondence of pre-specified confidence levels used in the 
intervals calculations and the achieved annual forecast 
error coverage they provided. Moreover, comparisons with 
2 naïve reference approaches were done to evaluate the 
sizes of the prediction intervals according to their forecast 
error coverage. 

 
 

2. Prediction Intervals Methods 
 
In this section the proposed method to calculate 

prediction intervals is presented and compared with 
previous approaches. Moreover, two naïve reference 
methods to calculate the intervals are presented. Their 
objective is to provide a basis of comparison to analyze the 
performance of the proposed method. 
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2.1 Proposed method 
 
It is desired as a prediction interval for any point 

forecast of PV power generation fi, an interval that will 
contain the true PV power generation yi with a given 
confidence level. One way to approach this problem is 
making assumptions about the distribution of the forecast 
error e(x), regarded as f(x) –y, where x represents the 
input variables used to make the forecasts f(x). If the true 
distribution of the forecast error is known, predictive 
intervals can be obtained with a given confidence level 
from the corresponding probability distribution. In the case 
the true distribution is not known, one option is to assume 
that the forecast errors follow a known distribution and to 
estimate the parameters of such distribution via maximum 
likelihood estimation [7]. 

In a previous study, Lin and Weng [8], proposed to 
calculate prediction intervals with the approach described 
for forecasts done with support vector machines. They 
estimated the forecast error of the method based on the 
errors of a cross-validation procedure on the training data 
used to construct the forecast model. Furthermore, they 
assumed that the distribution of the forecast errors 
followed a symmetric Gaussian distribution, as shown in 
Eq. 1 or a symmetric Laplacian one, as showed in Eq. 2. 
From these assumptions it is possible to estimate the 
scale parameter σ for each of these 2 distributions by 
maximizing the likelihood. In this case, σ for a Gaussian 
distribution is the root mean square error of the forecasts; 
and for a Laplacian one σ is the mean absolute error of the 
forecasts.  
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If the probability distribution of the forecast error 

follows a known distribution, then for a given probability 1 
– s, the prediction interval limits can be calculated from 
upper sth percentile ps of the corresponding probability 
distribution, Eq. 3. In Eq. 3 Llim and Ulim are the lower and 
upper limits of the prediction interval. 

 
 ;lim sL p= −  lim sU p=   (3) 

 
For a Gaussian distribution, the upper ps is given by Eq. 

4, where Φ-1 is the quantile function of the distribution. 
 

 ( )1σ Φ 1 ssp −= −   (4) 
 
For a Laplacian distribution, ps is given by Eq. 5.  
 

 ( )σ ln 2ssp = −  (5) 

According to Lin and Weng [8], similar approach was 
also used by Platt [9] in the problem of classification. 
However, this kind of approach presents 2 problems to be 
applied in the problem of PV power generation forecasts. 
First, the forecasts errors are estimated from a cross-
validation procedure. The PV power generation forecast is 
a time series problem. As such, the use of cross-validation 
if applied directly will not yield good error estimates for 
the forecast model. The second problem is that the 
calculation of σ as proposed implies that the forecast 
error distribution depends on the input just through the 
forecasted value [8]. In other words, each forecast model 
will have just one prediction interval regardless the 
magnitude of the input variables. In the problem of PV 
power forecast this assumption poses a problem because 
forecasts for different periods of the day and weather 
conditions will have prediction intervals with different 
sizes. For example, forecasts for hours at the beginning 
and the end of the day should have prediction intervals 
with lower magnitudes than for hours around noon time. 

In fact, we showed in a previous study that the 
application of such approach without modification is not 
effective in the PV power generation forecast problem, 
proposing a simple modification based on the target hours 
of the forecasts to improve the prediction intervals [10]. 

In this study we propose to use past forecast errors 
instead of using the ones of a cross-validation procedure 
applied on training data. Furthermore, a criterion based on 
input data similarity is used to obtain suitable prediction 
intervals according to the forecast hour and input data of 
the forecasts. The hypothesis behind this approach is that 
for a specific location, at a given time, similar input data 
should yield similar forecasts errors of PV power 
generation and these errors should belong to the same 
distribution. Thus, a prediction interval of the PV power 
generation value for a sunny weather at noon will be 
based on past forecast errors for sunny weather at noon. 
Calculating this way for a given location, the prediction 
intervals will vary according to the input data, weather 
conditions and target hour of the forecasts.  

To identify past input data similar to the input data of a 
target forecast the Euclidean distance was used as the 
similarity parameter. Therefore, to calculate the prediction 
intervals of a forecast of PV generation for a given hour, 
the input data that generated such forecast is compared 
with the input data of hourly forecasts done in the previous 
60 days. From this comparison the n% most similar hours 
are retrieved and used in the calculation of the prediction 
intervals. Based on a preliminary assessment of how 
much data are necessary and how similar the data have to 
be to obtain good prediction intervals, n was set on 5% 
(42 hours) of the initial set of data. The preliminary 
assessment results are in the initial version of this paper 
presented at the 2014 International Conference of 
Electrical Engineering [11]. 

Finally, regarding the proposed method, two physical 
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constraints were adopted. First, the lowest value for the 
inferior limit of the prediction intervals was set to be 
zero as it is the minimum PV power generation. Second, 
the maximum value for the superior limit of the prediction 
intervals for a PV system was set to its maximum 
theoretical power generation at the same hour, given the 
same extraterrestrial insolation conditions.  

 
2.2 Reference method 1  

 
If past forecast data are available, a simple approach to 

obtain predictive intervals would be to use these data 
directly without making any assumption about the 
distribution of the forecast errors. In this case, the intervals 
are directly estimated from the quantiles of the data sets. 
With this method, to calculate the prediction intervals for a 
given forecast with a confidence level of 90% for example, 
it is enough to identify to 5% quantile and the 95% quantile 
of the past forecasts that had their input data similar to the 
input data of the target forecast. 

This method may work well in databases containing 
many years of past forecasts. However, its application in 
this study provides an assessment regarding the validity of 
the hypothesis done in section 2.1, where several years of 
past data are not available. 

 
2.3 Reference method 2  

 
A different reference approach to calculate the prediction 

intervals is one where they are defined by the maximum 
and minimum possible values for the forecasts of PV 
power generation for each hour of the day. In this way 
the intervals will always comprise the true PV power 
generation and they will provide coverage of the forecast 
error of 100%. In reality, however, the resulting intervals 
will be so large that they will not have any practical 
application.  

Nevertheless, the use of this method has the objective to 
provide a reference value regarding the size of the intervals 
obtained with the method proposed in section 2.1. If the 
proposed method yield intervals as large as the ones 
obtained with this reference method, they will not be useful.  

To obtain the maximum possible values for the forecasts 
of PV power, the horizontal extraterrestrial insolation for 
every hour of forecast is used. With this information the 
PV power generation was calculated using the model 
presented in Eq. 6, proposed by Mellit & Pavan [2]. 

 
 pv bosA*n *n *GpvP =  (6) 

 
In Eq. 6 Ppv is the photovoltaic power generated in kW, A 

is the total area of the modules in m2, npv is the conversion 
efficiency, nbos the system efficiency and G the insolation 
in kW/m2. To obtain a maximum theoretical value for the 
PV power G was regarded as the horizontal extraterrestrial 
insolation. Furthermore, to avoid problems with shadow, 

modules tilt angle, orientation angle, and with the first and 
last hours of daylight, a correction factor of 5% of the rated 
power of the PV system was added to Ppv. 

 
 

3. Forecast Method 
 
The prediction interval methods described in section 2 

can provide intervals for forecasts of PV power generation 
done with any kind of method. They depend only of the 
past input data used and the output data the forecast 
method yielded. In this study they were applied to provide 
intervals to forecasts done with a method based on the 
use of support vector regression, hourly extraterrestrial 
insolation and numerical weather prediction data. These 
data are provided on the day preceding the forecast day. 
The forecast horizon is therefore of one day ahead of time. 
The numerical weather prediction is provided by grid-point 
value forecasts with a meso-scale model, GPV-MSM, of 
the Japan Meteorological Agency.  

The input data used for any hour of forecast of PV 
power is in Table 1. The method provides hourly forecasts 
based on the hourly input data and for each day of forecasts 
the model is trained with hourly input data and measured 
PV power of the previous 60 days. Details about the setup 
of the algorithm and its application are in previous studies 
[6, 12]. 

 
Table 1. Input data used in the forecasts of PV power. 

 Input data (hourly values) 
 

GPV-MSM data 
Air temperature*, air relative humidity*,  
Low-level cloudiness, mid-level cloudiness, 
High-level cloudiness 

Calculated data extraterrestrial insolation* 
*The value for the hour of forecast and the preceding one are used as input. 

 
 

4. PV Systems Data 
 
One year of prediction intervals, 2010, were calculated 

for hourly forecasts of power of 2 PV systems. One PV 
system is located in Saitama prefecture, north of Tokyo, 
and the other in Aichi prefecture, southwest of Tokyo. Both 

Table 2. PV systems specification and installation data. 
 System 1 (PV1) System 2 (PV2) 

Annual Forecast RMSE 0.81 kWh 
(Low Errors) 

1.32 kWh 
(High Errors) 

Location (prefecture) Saitama Aichi 
Cell Type Polycrystalline Polycrystalline 

Array Capacity 10 kW 10 kW 
Modules Tilt Angle 10o 1o 

Modules Orientation SSE SE 
Conversion Efficiency 12.62% 13.98% 

Area Covered 79.40 m2 71.52 m2 
ηbos 0.8 0.8 

Latitude 36o08’ 34o59’ 
Longitude 139o33’ 137o11’ 
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PV systems have a rated power of 10 kW, and their 
specifications and installation conditions are in Table 2.  

These 2 PV systems were chosen because they provide 
examples of forecasts of PV power with high average 
annual forecasts errors, PV2 in Table 2, and low average 
annual forecast errors, PV1 in Table 2. Thus, the perfor-
mance of the prediction interval methods can also be 
assessed for different kinds of forecast errors. 

 
 

5. Results 
 
In Fig. 1, the annual forecast error coverage achieved 

with each confidence level is presented. In Fig. 1a are 
results for PV system 1, and in Fig. 1b are the results for 
PV system 2. Each figure also contains a dotted line 
representing the ideal behavior regarding the confidence 
levels and the forecast error coverage. Finally, in the same 
Fig. 1a and Fig. 1b are the results obtained using the 
reference approach 1.  

Based on the results in Fig. 1a and Fig. 1b, it is clear that 
the reference method 1 has poor performance regardless 
the PV system and the confidence level. This characteristic 
reflects the fact that the data set size of 42 hours of similar 
input data is not sufficient to provide direct estimation of 
prediction intervals.  

Regarding the distribution assumptions, the results in 
Fig. 1 show that the difference between the use of the 
Laplacian distribution and the Gaussian distribution was 
small. However, clearly, assuming a Laplacian distribution 
caused the prediction interval method to approximate 
well the slope of the ideal curve for both PV systems. In 
the case of the Gaussian distribution assumption, the 
confidence levels had a tendency of underestimating the 

forecast error coverage for low values, 85% and 90% and 
overestimating them for high values, 95% and 97.5%. This 
behavior is noted in Fig. 1a. 

Comparing both PV systems, PV system 2, which 
generally had high forecast errors, caused the proposed 
method to yield prediction intervals naturally larger than 
the ones obtained for PV system 1. The overall result was 
higher forecast error coverage for PV system 2 than for PV 
system 1. However, there was not a strong difference; it 
was not higher than 1.5% in the worst case.  

Another important factor to consider in the evaluation of 
a prediction interval method is the size of the intervals it 
yields given different pre-specified confidence levels.  

In the case of PV power prediction intervals, their size 
can be regarded as a kind of reserve power needed by the 
PV system operator to deal with the forecast error. For 
example, given a forecast of PV power for an hour, if the 
forecast underestimates the true value, there will be an 
excess of power regarding what was expected. This excess 
can be thought as a quantity that has to be absorbed, 
wasted, or sent somewhere else in the power grid, or to a 
battery, so that the balance between power demand and 
supply can be kept. In the case such excess of power is not 
wasted, the upper limit of the prediction interval can be 
thought as a measure of a reserved capacity prepared to 
store surplus of PV power generation.  

On the other hand, if the forecasted PV power 
overestimates the true value, power has to be delivered by 
the power grid, or by a battery to complete the gap between 
what was expected and what was generated. In this case, 
the lower limit of the prediction interval expresses a 
reserved capacity available to deliver power in case of 
overestimations.  

In both cases the prediction intervals can be seen a 
measure of how much power has to be reserved. An 
example of this way of seeing the prediction intervals is 
illustrated in Fig. 2. 

Considering the intervals as reserve power, they will 
imply costs. Therefore, it is desired to obtain intervals that 
are only as big as necessary. The intervals’ size for given 
confidence levels, provides then a useful measure when 
comparing prediction interval methods. 

It should be noted that a proper prediction interval 

Fig. 1. Annual forecast error coverage with prediction 
intervals versus the corresponding pre-specified 
confidence levels used in the calculation of the 
intervals for a PV system with low forecast errors 
(a) and another with high ones (b). 

 
Fig. 2. Prediction intervals as a measure of reserve power 

to deal with PV power generation fluctuations. 
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method will yield intervals that ultimately reflect the level 
of forecast error. If the forecast errors for a given hour or 
weather condition are high, so it should be the related 
prediction interval. Therefore comparisons of interval sizes 
only make sense when comparing different prediction 
interval methods to evaluate which one reflects better the 
characteristics of the forecast errors.  

An initial evaluation of the intervals size is presented in 
Fig. 3(a), for PV system 1 and Fig. 3(b) for PV system 2. 
The reserve power is normalized by the PV system rated 
power. The required value achieved for each pre-specified 
confidence interval is presented. In Fig. 3(a) and Fig. 3(b) 
the reserve power required by reference methods 1 and 2 
are also presented.  

The results in Fig. 3 show that with reference 2 100 % 
of the forecast errors are covered. However the required 
reserve power to do that was significantly higher than the 
reserve power required by the proposed method. For 
example, in Fig. 3(a) using the Laplacian distribution 
assumption with a confidence level of 97.5%, a forecast 
error coverage of 97.1% was achieved using 36% less 
reserve power than reference method 2. 

Comparing the distribution assumptions, generally with 
the Gaussian distribution less reserve power was required 
than with the Laplacian distribution. Nevertheless, as 
shown in Fig. 1, the effective forecast error coverage was 
also slightly lower than the one achieved with the 
Laplacian distribution assumption. 

In Fig. 3(a) and Fig. 3(b), the results indicate that 
reference method 1 required the lowest reserve power 
regardless the confidence level. However, the results in Fig. 
2 also show that such low reserve power values were 
associated with poor forecast error coverage, making the 
method actually the worst of the ones evaluated. 

From Fig. 3(b), one can see that the differences between 
the reserve power value required by reference method 2 
and the ones of the other methods are lower than in the 
case of Fig. 3(a). For the PV system with high forecast 
errors, the application of the proposed method was less 
effective than for PV systems with low forecast errors. For 
example, in Fig. 3(b) using the Laplacian distribution 
assumption with a confidence level of 97.5%, a forecast 
error coverage of 98.2% was achieved using 18% less 
reserve power than with the reference method 2. This value 
is half the difference achieved for PV system 1 in Fig. 3(a). 

A better understanding of the performance of each 
method can be seen comparing directly the effective 
forecast error coverage with the corresponding reserve 
power for each method and PV system. These results are in 
Fig. 4. 

To identify how much reserve power is required in terms 
of what is actually generated, the reserve power in Fig. 4 
was normalized by the annual power generation of each PV 
system.  

The results in Fig. 4 indicate that the use of the Gaussian 
distribution with the proposed method yielded in general 
lower prediction intervals (expressed as the reserve power 
ratio) than the use of the Laplacian distribution. However, 
as also noted in Fig. 1(a), for the PV system with low 
forecast errors using the Gaussian distribution assumption 
caused strong overestimations of the forecast error coverage 
for low confidence levels and slight underestimations for 
high confidence levels. With the Laplacian distribution 
assumption the proposed method presented more uniform 
behavior approximating better the pre-specified confidence 
levels.  

 

 
Fig. 3. Annual reserve power required with each prediction 

interval method for different confidence levels (for 
a PV system with low forecast errors (a) and one 
with high ones (b). 

 
Fig. 4. Annual forecast error coverage versus reserve power

for different PV systems and prediction interval 
methods. 
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Fig. 5. Examples of forecasts of PV power generation with 

prediction intervals with the proposed method. 
 
For the PV system with high forecast errors, the 

Gaussian distribution was a better fit. Furthermore, with 
the Gaussian distribution also the lowest reserve power 
ratio was achieved.  

These results can be understood considering the shapes 
of the Laplacian and Gaussian curves and the distribution 
of the forecast errors of both PV systems. For PV system 1, 
with generally low forecast errors, most of the forecast 
errors will be around zero. Moreover, the frequencies of 
forecast errors will decrease sharply with the increase of 
their absolute values. This behavior resembles better the 
shape of the Laplacian distribution. In the case of PV 
system 2, with generally higher forecast errors, the 
frequency of low forecast error will be lower than the ones 
of PV system 1, yielding a forecast error distribution more 
similar to the Gaussian curve.  

Comparing the results obtained with the proposed 
method with the ones provided by the reference method 2, 
the benefits in terms of less reserve power are clear. For 
example, to cover 97.1% of the forecast errors for PV 
system 1, it was necessary to have a reserve of 1.5 times 
the total PV power generated in the year. To cover all 
forecast errors with the reference method 2 it was required 
near to 2.35 times the total PV power generated in the year.  

In Fig. 5 are examples of prediction intervals calculated 
with the proposed method for a given day. The calculations 
were done for PV system 1 using the Laplacian distribution 
assumption. In Fig. 5 the green line indicates the superior 
limit of the prediction interval achieved with reference 
method 2.  

 
 

6. Conclusion 
 
The objective of this study was to present a simple 

method to calculate prediction intervals for forecasts of 
power generation of PV systems. The method is based on 
the use of the maximum likelihood estimation, and on the 
concept of similarity between the input data used in the 
forecasts.  

The results showed that the proposed method used with 
the Laplacian distribution assumption is more suitable to 

PV systems with low forecast errors. For PV systems with 
high forecast errors the Gaussian distribution assumption 
was more suitable.  

In spite of that, focusing only on the relation between 
forecast error coverage and confidence levels of the 
intervals, the use of the Laplacian distribution is indicated. 
The Gaussian distribution assumption yielded a stronger 
tendency to overestimate prediction intervals for low 
confidence level values and to underestimate them for high 
confidence level values than the Laplacian distribution 
assumption. 

Based on the results, it can be concluded that the 
proposed method to calculate the prediction intervals in 
the problem PV power generation forecast is valid. The 
forecast error coverage obtained with it approximated 
well the confidence levels of the intervals, and it used 
significantly less reserve power than the reference method 
2. Moreover, it requires just 60 days of past forecasts, 
being a useful option when large databases with past PV 
power generation and forecast data are not available. 

Still, the results are based on PV systems’ data repre-
senting extreme cases regarding annual forecast errors. In 
further studies a comprehensive analysis containing a wide 
range of PV systems installed in Japan will be done to 
better characterize the validity of the method and of the 
forecast error distribution assumptions. 
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