• Title/Summary/Keyword: Photovoltaic generator system

Search Result 108, Processing Time 0.034 seconds

A Study on the Discontinuous Energy Ceneration System for Power Compensation (불연속 에너지 발생장치의 에너지 보상 시스템에 대한 연구)

  • Lee, Jeong-Il;Lim, Jung-Yeol;Kang, Byung-Bog;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.133-138
    • /
    • 2002
  • The developments of the solar and the wind power energy are necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with ever-changing weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.

  • PDF

A Study on the Energy Saving Capacity of Solar Power Generation System using Economic Evaluation (경제성 평가를 통한 태양광발전시스템 연계형 에너지저장장치 용량 선정에 관한 연구)

  • Lee, Yeo-Jin;Kim, Sung-Yul;Han, Se-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.1
    • /
    • pp.21-26
    • /
    • 2018
  • Due to the international environmental regulations and changes in policies, the demand for generators using the renewable energy is increasing. However, renewable energy generators with intermittent output characteristics such as solar and wind power generators, need the buffer facilities such as ESS during system operations. However, because of low price competitiveness in energy storage system, it is difficult to operate the renewable energy generator with ESS. Therefore, the government has recently proposed a policy to compensate the REC for renewable energy system with ESS. For all this, since the initial cost of the ESS is high, it is the most important to calculate and operate the optimal capacity of the ESS through an economic analysis. In this paper, we proposed the method of calculation the optimal capacity of ESS and analyzed economic feasibility of renewable energy system using the ESS according to depreciation in ESS price.

A Study on the Modeling and Operation Algorithm of Independent Power System for Carbon Free (Carbon Free를 위한 도서지역용 독립전원계통의 모델링 및 운용알고리즘에 관한 연구)

  • Wang, Jong-Yong;Kim, Byung-Ki;Park, Jea-Bum;Kim, Byung-Mok;Kim, Eung-Sang;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.760-768
    • /
    • 2016
  • Recently, as one of the policies for carbon free operation method of independent power system replacing diesel generator with renewable energy such as wind power and photovoltaic(PV) system has been presented. Therefore, this paper proposes an operation algorithm and modeling of independent power system by considering CVCF(constant voltage constant frequency) ESS(energy storage system) for constant frequency and voltage, LC(load control) ESS for demand and supply balancing and SVC(static var compensator) for reactive power compensation. From the simulation results based on the various operation scenario, it is confirmed that proposed operation algorithm and modeling may contribute stable operation and carbon free in independent power system.

Optimization of Stand-Alone Hybrid Power Systems Using HOMER Program (HOMER 프로그램을 이용한 독립형 하이브리드 발전시스템 최적화)

  • Yang, Su-Hyung;Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • Diesel fuel is expensive because transportation to remote areas adds extra cost, and it causes air pollution by engine exhaust. Providing a feasible economical and environmental solution to diesel generators is important. A hybrid system of renewable plants and diesel generators can benefit islands or other isolated communities and increase fuel savings. Renewable energy is, however, a natural source that produces a fluctuating power output. In this paper, hybrid power system of the marado lighthouse is proposed to supply stable power in the stand-alone hybrid power system. The proposed hybrid power system consists of the diesel generator, wind turbine, photovoltaic, fuel cell, and battery bank. To decrease the carbon emissions and find the optimization, the cost analysis of hybrid system is simulated using HOMER program and the optimized hybrid power system is designed.

Independent Generation System Design for the Economic Management of Electrical Charging Stations (전기충전소의 경제적 운영을 위한 독립발전 시스템 설계)

  • Seo, Jin-Gyu;Kim, Kyu-Ho;Rhee, Sang-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.222-227
    • /
    • 2015
  • This paper presents the optimal energy generation systems for economical EVs(Electric Vehicles) charging stations located in an island area. The system includes grid electricity, diesel generator and renewable energy sources of wind turbines and PV(Photovoltaic) panels. The independent generation system is designed with data resources such as annual average wind speed, solar radiation and the grid electricity price by calculating system cost under different structures. This sensitive analysis on the varying data resources allows for the configuration of the most economical generation system for charging stations by comparing initial capital, operating cost, NPC(Net Present Cost) and COE(Cost of Energy). Depending on the increase of the grid cost, the NPC variation of the most economical system which includes renewable energy generations and grid electricity can be smaller than those of other generation systems.

The management of Photovoltaic Generator system with Battery and Electrolyzer (Battery와 Electrolyzer를 이용한 태양광 발전 시스템 운영)

  • Gang, Gi-Hyeok;Kim, Yun-Seong;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1130-1131
    • /
    • 2008
  • 현재는 화석연료에서 신재생에너지로 에너지 패러다임이 변화하고 있는 시점이며, 신재생에너지를 보다 효율적으로 운영하여 효율성을 높이기 위해 많은 연구가 이루어지고 있다. 전기 에너지는 생산과 동시에 소비해야 한다는 특성을 가지고 있으며, 그 중 태양광 발전과 같은 신재생에너지원은 기후요인에 의해 출력이 결정되기 때문에 수요전력보다 공급전력이 많아 잉여전력이 생기거나 공급전력보다 수요전력이 많아 부족전력이 발생하여 전력품질을 악화시킬 수 있다는 단점이 있다. 본 논문에서는 이런 태양광 발전의 단점을 보완하기 위해서는 잉여전력이 발생한 경우는 Battery와 Electrolyzer를 이용하여 에너지를 저장하고 부족전력이 발생한 경우는 Battery를 이용하여 보상하는 방법을 제안하였다.

  • PDF

Control Strategy and Characteristic Analysis of PEMFC/Photovoltaics Hybrid Vehicle (연료전지-태양전지 하이브리드 자동차에 대한 제어전략 및 특성평가)

  • Ahn, Hyo-Jung;Ji, Hyun-Jin;Bae, Joong-Myeon;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.840-847
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes a proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 21 %).

Voltage and Frequency Control Method Using Battery Energy Storage System for a Stand-alone Microgrid (배터리 에너지 저장장치를 이용한 독립형 마이크로그리드의 전압 및 주파수 제어)

  • Kim, Sang-Hyuk;Chung, Il-Yop;Lee, Hak-Joo;Chae, Woo-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1168-1179
    • /
    • 2015
  • This paper presents voltage and frequency control methods for a stand-alone Gasa Island Microgrid in South Korea that can be fully energized by renewable energy resources such as photovoltaic systems and wind turbines. To mitigate the variations of the output of renewable energy resources and supply more reliable electricity to customers, battery energy storage systems (BESSs) are employed in the stand-alone microgrid. The coordination between BESSs and pre-existing diesel generators is an important issue to manage the microgrid more securely. This paper presents voltage and frequency control schemes considering the coordination of BESSs and DGs. The effectiveness for the operating method is validated via simulation studies.

An Experimental Study on the Benefit of Pre-ventilation Using Solar Sunroof (쏠라 썬루프를 이용한 주차환기 시스템의 효과에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.89-95
    • /
    • 2014
  • This study presented the benefit of the pre-ventilation using solar sunroof with integrated photovoltaic. Recent year, auto-makers make an effort to enhance the fuel efficiency and moreover to clean the cabin passenger's health. Solar energy, one of the alternative energies, adapted in automotive air handling system, in order to pre-ventilation when vehicle parked under the sun in summer. The power generated by a prototype solar sunroof has been used to run blower in a air handing system. And the solar sunroof was installed in a vehicle, and evaluated to find out benefit of the pre-ventilation. The effect of reducing the cabin temperature about $3^{\circ}C{\sim}10^{\circ}C$ with 20 ~ 40W power generator from solar sunroof were obtained in the pre-ventilation test. This reduced thermal load can lead to the reduction of air-conditioning operation time than that of current car. Moreover, fuel economy may increase as a results of the short use of the air-conditioning time. Additionally, Total Volatile Organic Compounds in the cabin is reduced maximum 80% than that of the current vehicle.

Simulation analysis of a renewable energy based microgrid using RTDS (RTDS를 이용한 신재생에너지 기반 마이크로그리드 시뮬레이션 해석)

  • Heo, Se-Rim;Kim, Gyeong-Hun;Lee, Hyo-Guen;Hwang, Chul-Sang;Park, Min-Won;Yu, In-Keun;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.143-144
    • /
    • 2011
  • Due to enhanced demands on quality, security and reliability of the electric power energy system, a microgrid has become a subject of special interest. In this paper, output characteristics of energy storage system (ESS) with an electric double layer capacitor (EDLC) and battery energy storage system (BESS) of a renewable energy based microgrid were analyzed under grid-connected and islanded operation modes. The microgrid which consists of photovoltaic and wind power turbine generators, diesel generator, ESS with an EDLC, BESS and loads was modeled using real time digital simulator. The results present the effective control patterns of the microgrid system.

  • PDF