• 제목/요약/키워드: Photovoltaic cells

검색결과 797건 처리시간 0.021초

2-Terminal Perovskite/SHJ 탠덤 태양전지 기술 검토 (Review of 2-terminal Perovskite/SHJ Tandem Junction Solar Cell Technology)

  • 장민규;전영우;김민제;이준신;박진주
    • Current Photovoltaic Research
    • /
    • 제10권3호
    • /
    • pp.84-89
    • /
    • 2022
  • c-Si solar cells currently account for more than 90% of the solar energy market. Research on tandem junction solar cells to overcome efficiency limitations is drawing attention at a time when new technologies are being developed to secure the price competitiveness of silicon solar cells. Among several candidate materials for silicon-based tandem solar cells, perovskite has recently been studied as it is suitable for the ease of process as well as for its properties as a tandem solar cell material. In this study, we want to review the research trends and technology limitations of 2-T Perovskite/SHJ tandem junction solar cells.

기판 세정특성에 따른 표면 패시배이션 및 a-Si:H/c-Si 이종접합 태양전지 특성변화 분석 (Effect of Cleaning Processes of Silicon Wafer on Surface Passivation and a-Si:H/c-Si Hetero-Junction Solar Cell Performances)

  • 송준용;정대영;김찬석;박상현;조준식;송진수;왕진석;이정철
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.210-216
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafers. It is observed that the passivation quality of a-Si:H thin-films on c-Si wafers depends highly on the initial H-termination properties of the wafer surface. The effective minority carrier lifetime (MCLT) of highly H-terminated wafer is beneficial for obtaining high quality passivation of a-Si:H/c-Si. The wafers passivated by p(n)-doped a-Si:H layers have low MCLT regardless of the initial H-termination quality. On the other hand, the MCLT of wafers incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with initial cleaning and H-termination schemes. By applying the improved cleaning processes, we can obtain an MCLT of $100{\mu}sec$ after H-termination and above $600{\mu}sec$ after i a-Si:H thin film deposition. By adapting improved cleaning processes and by improving passivation and doped layers, we can fabricate a-Si:H/c-Si heterojunction solar cells with an active area conversion efficiency of 18.42%, which cells have an open circuit voltage of 0.670V, short circuit current of $37.31\;mA/cm^2$ and fill factor of 0.7374. These cells show more than 20% pseudo efficiency measured by Suns-$V_{oc}$ with an elimination of series resistance.

Ag 함량이 진공증발법으로 형성된 광금지대 (Ag,Cu)(In,Ga)Se2 태양전지에 미치는 영향 (Effects of Ag Content on Co-evaporated Wide Bandgap (Ag,Cu)(In,Ga)Se2 Solar Cells)

  • 박주완;윤재호;조준식;유진수;이희덕;김기환
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.16-20
    • /
    • 2015
  • Ag addition in chalcopyrite materials is known to lead beneficial changes in aspects of structural and electronic properties. In this work, the effects of Ag alloying of $Cu(In,Ga)Se_2$-based solar cells has been investigated. Wide bandgap $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x = 0.75~0.8) films have been deposited using a three-stage co-evaporation with various Ag/(Ag+Cu) ratios. With Ag alloying the $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x~0.8) films were found to have greater grainsize and film thickness. Device were also fabricated with the $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x~0.8) films and their J-V and quantum efficiency measurements were carried out. The highest-efficiency $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ solar cell with Eg > 1.5 eV had an efficiency of 12.2% with device parameters $V_{OC}=0.810V$, $J_{SC}=21.7mA/cm^2$, and FF = 69.0%.

Characterization of an In2Se3 Passivation Layer for CIGS Solar Cells with Cd-free Zn-containing Atomic-layer-deposited Buffers

  • Kim, Suncheul;Lee, Ho Jin;Ahn, Byung Tae;Shin, Dong Hyeop;Kim, Kihwan;Yun, Jae Ho
    • Current Photovoltaic Research
    • /
    • 제9권3호
    • /
    • pp.96-105
    • /
    • 2021
  • Even though above 22% efficiencies have been reported in Cd-free Cu(In,Ga)Se2 (CIGS) solar cell with Zn-containing buffers, the efficiencies with Zn-containing buffers, in general, are well below 20%. One of the reasons is Zn diffusion from the Zn-containing buffer layer to CIGS film during buffer growth. To avoid the degradation, it is necessary to prevent the diffusion of Zn atoms from Zn-containing buffer to CIGS film. For the purpose, we characterized an In2Se3 film as a possible diffusion barrier layer because In2Se3 has no Zn component. It was found that an In2Se3 layer grown at 300℃ was very effective in preventing Zn diffusion from a Zn-containing buffer. Also, the In2Se3 had a large potential barrier in the valence band at the In2Se3/CIGS interface. Therefore, In2Se3 passivation has the potential to achieve a super-high efficiency in CIGS solar cells that employ Cd-free ALD processed buffers containing Zn.

See-through 형태의 투광형 태양광 모듈 제조를 위한 직렬접합형 스트랩 제조 기술 (Fabrication of Series Connected c-Si Solar Strap Cells for the See-through Type Photovoltaic Modules)

  • 박민준;윤성민;김민섭;이은비;전기석;정채환
    • Current Photovoltaic Research
    • /
    • 제11권4호
    • /
    • pp.114-117
    • /
    • 2023
  • Transparent Photovoltaic (PV) modules have recently been in the spotlight because they can be applied to buildings and vehicles. However, crystalline silicon (c-Si) solar modules, which account for about 90% of the PV module market, have the disadvantage of applying transparent PV modules due to their unique opacity. Recently, a see-through type PV module using a crystalline silicon solar strap has been developed. However, there is a problem due to a decrease in aesthetics due to the metal ribbon in the center of the see-through type PV module and difficulty bonding the metal ribbon due to the low voltage output of the strap. In this study, to solve this problem, we developed a fabrication process of series connected c-Si solar strap cells using the c-Si solar cells. We succeeded in fabricating a series connected strap with a width of 2-10 mm, and we plan to manufacture an aesthetic see-through type c-Si PV module.

태양광발전을 이용한 에어콘의 보조운전 제어 시스템 (Auxiliary Power Supply using Photovoltaic Power Generation for Air-Conditioner)

  • 황인호;유권종;송진수;이후기;정찬규
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국태양에너지학회, 한국에너지공학회 1993년도 춘계 공동학술발표회 초록집
    • /
    • pp.47-52
    • /
    • 1993
  • Recently, as exactly clean source, the research of photovoltaic power generation is undertaken actively and widely. In this paper, an auxiliary power supply system which is composed of photovoltaic generation and DC-DC boost chopper is described. This system in mainly for Air-conditioner appliances is which AC source is formed through rectifying circuit and without electrical storage battery. There exist two operating modes depending on the power quantity of the solar cells and the load. The control algorithm is discussed.

  • PDF

태양에너지를 이용한 차세대 저가·고효율 태양전지 기술 (The Next Generation Photovoltaic Technology for Cost-Effective and High Efficiency)

  • 정채환
    • 진공이야기
    • /
    • 제3권2호
    • /
    • pp.4-10
    • /
    • 2016
  • Photovoltaic technology has been intensively developed as one of the most powerful renewable energies, replacing a fossil fuel such as coal and petroleum. Every country in the world has emphasized on development of photovoltaic technology and our government has invested heavily in low cost and high efficiency. Korea institute of industrial technology (KITECH) has lastingly constructed PV R&D infra for development of cost-effective and high efficiency solar cells as well as support of commercialization in PV's small and medium enterprises. In this paper, we introduce the next generation PV R&D and infra in KITECH.

태양광 발전의 최근 업계 동향 (Recent trends in photovoltaic industries)

  • 이수홍;조은철;김동섭;조영현;민요셉
    • 한국결정성장학회지
    • /
    • 제7권1호
    • /
    • pp.93-107
    • /
    • 1997
  • 태양전지를 이용한 태양광 발전은 조용하고 안전하게 무한한 에너지원인 태양에너지를 이용하여 전기에너지를 얻는 청정에너지 발생법이다. 1995년 태양전지의 출하량은 약 84.8 MW로, 매년 20% 이상의 시장성장이 예상된다. 본 논문에서는 태양광 발전의 원리, 특징, 종류, 주변기자재 등을 조사하였고, 최신의 태양전지 업계의 동향을 살펴보았다.

  • PDF

랜덤 환경조건 기반의 태양광 모듈 인공신경망 모델링 (Artificial Neural Network Modeling for Photovoltaic Module Under Arbitrary Environmental Conditions)

  • 백지혜;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.110-115
    • /
    • 2022
  • Accurate current-voltage modeling of solar cell systems plays an important role in power prediction. Solar cells have nonlinear characteristics that are sensitive to environmental conditions such as temperature and irradiance. In this paper, the output characteristics of photovoltaic module are accurately predicted by combining the artificial neural network and physical model. In order to estimate the performance of PV module under varying environments, the artificial neural network model is trained with randomly generated temperature and irradiance data. With the use of proposed model, the current-voltage and power-voltage characteristics under real environments can be predicted with high accuracy.

염료 감응형 태양전지 효율에 미치는 백금 상대 전극 제조공정의 영향 (Effects of Deposition Method of Thermally Decomposed Platinum Counter Electrodes on the Performance of Dye-Sensitized Solar Cells)

  • 서현우;백현덕;김동민
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.63-69
    • /
    • 2017
  • In this work, two different platinum (Pt) counter electrodes have been prepared by spin coating a Pt solution and screen printing a Pt paste on fluorine doped tin oxide (FTO) glass substrate followed by sintering at $380^{\circ}C$ for 30 min. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) analyses of the Pt electrodes showed that the spin coated electrode was catalytically more active than the screen printed electrode. The above result agrees well with the surface morphology of the electrodes studied by atomic force microscopy (AFM) and the photovoltaic performance of the dye-sensitized solar cells (DSSCs) fabricated with the Pt electrodes. Moreover, calculation of current density-voltage (j-V) curves according to diode model with the parameters obtained from the experimental j-V curves and the EIS data of the DSSCs provided a quantitative insight about how the catalytic activity of the counter electrodes affected the photovoltaic performance of the cells. Even though the experimental situations involved in this work are trivial, the method of analyses outlined here gives a strong insight about how the catalytic activity of a counter electrode affects the photovoltaic performance of a DSSC. This work, also, demonstrates how the photovoltaic performance of DSSCs can be improved by tuning the performance of counter electrode materials.