• 제목/요약/키워드: Photovoltaic Cell

검색결과 1,089건 처리시간 0.033초

하이브리드 커패시터를 적용한 소형 태양광 전원장치 (The Small Photovoltaic power supply using Hybrid Supercapacitor)

  • 김태엽
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.826-831
    • /
    • 2019
  • 소형 독립형 태양광 전원장치는 조명장치, CCTV 등에 많이 활용되고 있다. 이러한 장치가 경쟁력을 가지기 위해서는 배터리와 같은 전력저장장치 수명이 매우 중요하다. 하이브리드 커패시터는 고밀도와 장수명의 장점을 가지고 있다. 본 논문에서는 하이브리드 커패시터를 이용한 독립형 태양광 전원장치를 제안한다. 전력변환장치의 구성하기 위해 하이브리드 커패시터의 충방전 특성 및 내부저항을 측정하였다. 일사량 변화에도 안정적인 최대 출력점 추종제어 알고리즘을 제시하였다. 제시한 시스템의 타당성을 검증하기 위해 18W의 하이브리드 커패시터와 10W태양광 전지를 이용하여 시제품을 제작하고 실험하였다.

Solar Vehicle을 위한 IPMSM 드라이브의 새로운 MPPT 제어 (A Novel MPPT Control of IPMSM Drive for Solar Vehicle)

  • 장미금;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.14-25
    • /
    • 2011
  • The solar vehicle is in the spotlight in the eco-friendly aspect of photovoltaic system using unlimited solar energy. The solar vehicle uses energy of photovoltaic and battery. The solar vehicle uses stored energy in battery when photovoltaic power is lower than consumption power by solar vehicle and if photovoltaic power is higher than consumption power by solar vehicle then photovoltaic power is stored to battery. To improve use efficiency of photovoltaic, the researches about MPPT method to operate maximum power point and interior permanent magnet synchronous motor(IPMSM)drive system using photovoltaic is necessary. This paper proposes MPPT control algorithm for solar vehicle using new fuzzy control(NFC). In this paper, to reduce switching loss, the DC-DC converter is omitted. The NFC controller can be use instead of PO. The NFC controller is performed MPPT control using solar cell voltage and q -axis current of IPMSM. The output of NFC is command q -axis current of IPMSM and this current is operated IPMSM. The response characteristics of algorithm proposed in this paper is compared response characteristics of conventional PO method by PSIM program and validity of this paper prove using this result.

태양광발전시스템의 장기운전에 의한 성능변화 분석 (Performance Analysis of long term operation for photovoltaic system)

  • 김의환;김정삼
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.110.1-110.1
    • /
    • 2011
  • This study analyzed the performance of long term operation photovoltaic system The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 12 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 38.0 MWh in 2010. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 8.8% in 2011. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 12 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

  • PDF

후 식각법을 이용한 Textured ZnO:Al 투명전도막 제조 (The fabrication of textured ZnO:Al films using HCI wet chemical etching)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1482-1484
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures $({\leq}300^{\circ}C)$, the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

온도에 따른 집광형 태양전지의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of a Concentrating Photovoltaic Cell as a Function of Temperature)

  • 신재혁;이승신;김상민;부준홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.96-101
    • /
    • 2012
  • An experimental study was conducted to investigate the performance of a concentrating photovoltaic cell (CPV) against temperature. It is know that a high efficiency of a CPV can be achieved only with proper cell temperature as well as high concentration ratio (CR). This study is concerned with appropriate cooling condition for a liquid-convection cooler for the best performance of a specific CPV. A series of experiments was conducted in a range of cell temperatures as a result of varying cooling conditions, while the concentration ratio was 390 and the solar irradiation flux was higher than 900 $W/m^2$ in outdoor environment. The CPV had a planar dimension of 10 by 10 mm. A Fresnel lens was used as a concentrator, of which the dimension was 221 mm(W) ${\times}$ 221 mm(L) ${\times}$ 3 mm(t) and the transmissivity was known to be 0.8. The cooler was attached to the bottom side of the CPV and had a contact area of 21 mm(W) ${\times}$ 26 mm(L), which was identical to the size of the base plate of the CPV. The coolant temperature was controlled by an isothermal bath and the flow rate was controlled and measured by a flowmeter. The experimental results showed that the average of power efficiency of the CPV decreased from 28.6 % to 24.7 % as the cell temperature increased from $36^{\circ}C$ to $97^{\circ}C$. An appropriate cooling method of a CPV might increase the power conversion efficiency by about 4% for the same concentration ratio. Discussion is included from the viewpoint of the combined efficiency in addition to the power efficiency.

  • PDF

염료감응형태양전지 모듈 적용 PVT 집열기의 열적 성능 분석 (Analysis Thermal Performance of PV/Thermal Collector with Dye-sensitized Solar Cell Module)

  • 장한빈;문종혁;강준구;김진희;김준태
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2009년도 추계학술대회
    • /
    • pp.273-276
    • /
    • 2009
  • Photovoltaic-thermal(PVT) collectors are a combination of photovoltaic modules with solar thermal collectors, forming one device that receives solar radiation and produces electricity and heat simultaneously. Of various PV modules, dye-sensitized solar cell(DSC) is a relatively new type of solar cell technology that can transmit light while they can generate electricity. With this aspect, DSC can be applied into solar thermal collectors. The object of this study is to evaluate the thermal performance of PVT collector with DSC. The thermal performance of the DSC PVT combind collector was measured in outdoor conditions with the solar radiation of over $700W/m^2$. In this study, the PVT collector with the 30% light transmittance of DSC achieved its thermal efficiency of about 36%.

  • PDF

Stability of Bulk Heterojunction Organic Solar Cells with Different Blend Ratios of P3HT:PCBM

  • Kwon, Moo-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.98-101
    • /
    • 2012
  • I studied the stability of organic photovoltaic cells in terms of P3HT:PCBM-71 blend ratio as a function of storage time. I obtained the best cell performance by optimizing the blend ratio of electron donor and electron acceptor within the active layer. In this study, I found that the more the P3HT:PCBM ratio increases within the active layer, the more the cell efficiency decreases as the storage time increases. As a result, the best optimized blend ratio was the 1:0.6 ratio of P3HT:PCBM-71, and cell efficiency of the device with the 1:0.6 blend ratio was 4.49%. The device with the best cell efficiency showed good stability.

계통연계형 태양광발전 시스템의 속응성 제어 (Rapid response control A Utility Interactive Photovoltaic Generation System)

  • 정춘병;전기영;이상현;한경희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.279-285
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

태양광발전원을 고려한 전력계통의 신뢰도평가에 관한 기초연구 (A Basic Study on the Probabilistic Reliability Evaluation of Power System Considering Solar/Photovoltaic Cell Generator)

  • 박정제;오량;최재석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.19-21
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Solar energy is one of the most successful sources of renewable energy for the production of electrical energy following wind energy. And, the solar/photovoltaic cell generators can not make two-state model as conventional generators, but should be modeled as multi-state model due to solar radiation random variation. The method of obtaining reliability evaluation index of solar cell generators is different from the conventional generators. This paper presents a basic study on reliability evaluation of power system considering solar cell generators with multi-states.

  • PDF

차세대 태양전지의 계면 개질 전략 (Interfacial Engineering Strategies for Third-Generation Photovoltaics)

  • 임훈희;최민재;정연식
    • Current Photovoltaic Research
    • /
    • 제4권3호
    • /
    • pp.98-107
    • /
    • 2016
  • Third-generation photovoltaics are of low cost based on solution processes and are targeting a high efficiency. To meet the commercial demand, however, significant improvements of both efficiency and stability are required. In this sense, interfacial engineering can be useful key to solve these issues because trap sites and interfacial energy barrier and/or chemical instability at organic/organic and organic/inorganic interfaces are critical factors of efficiency and stability degradation. Here, we thoroughly review the interfacial engineering strategies applicable to three representative third-generation photovoltaics - organic, perovskite, colloidal quantum dot solar cell devices.