DOI QR코드

DOI QR Code

Stability of Bulk Heterojunction Organic Solar Cells with Different Blend Ratios of P3HT:PCBM

  • Received : 2011.12.23
  • Accepted : 2012.02.20
  • Published : 2012.04.25

Abstract

I studied the stability of organic photovoltaic cells in terms of P3HT:PCBM-71 blend ratio as a function of storage time. I obtained the best cell performance by optimizing the blend ratio of electron donor and electron acceptor within the active layer. In this study, I found that the more the P3HT:PCBM ratio increases within the active layer, the more the cell efficiency decreases as the storage time increases. As a result, the best optimized blend ratio was the 1:0.6 ratio of P3HT:PCBM-71, and cell efficiency of the device with the 1:0.6 blend ratio was 4.49%. The device with the best cell efficiency showed good stability.

Keywords

References

  1. S. E. Shaheen, D. S. Ginley, and G. E. Jabbour Eds., Organicbased Photovoltaics, MRS Bulletin 30 (2005) [DOI: 10.1557/ mrs2005.2].
  2. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. H. Lee and A. J. Heeger, Nat. Phot. 3, 297- 303 (2009) [DOI: 10.1038/nphoton.2009.69].
  3. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, Adv. Mater. 22, E135-E138 (2010) [DOI: 10.1002/adma.200903528].
  4. G. Zhao, Y. He and Y. Li, Adv. Mater. 22, 4355-4358 (2010) [DOI: 10.1002/adma.201001339].
  5. Y. J. Cheng, C. H. Hsieh, Y. J. He, C.S. Hsu and Y. F. Li, J. Am. Chem. Soc. 132, 17381-17383 (2010) [DOI: 10.1021/ja108259n].
  6. H. J. Son, W. Wang, T. Xu, Y. Liang, Y. Wu, G. Li and L. Yu, J. Am. Chem. Soc. 133, 1885-1894 (2011) [DOI: 10.1021/ja108601g].
  7. S. C. Price, A.C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc. 133, 4625-4631(2011) [DOI: 10.1021/ja1112595].
  8. T. Y. Chu, J. Lu, S. Beaupro, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding and Y. Tao, J. Am. Chem. Soc. 133, 4250 -4253 (2011) [DOI: 10.1021/ja200314m].
  9. M. Reyes-Reyes, K. Kim, and D. Carroll, Appl. Phys. Lett. 87 0083506 (2005) [DOI: 10.1063/1.2006986].
  10. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005) [DOI: 10.1002/adfm.200500211].
  11. S. A. Gevorgyan, M. Jørgensen, F. C. Krebs, Sol. Energy Mater. Sol. Cells, 92(7), 736 (2008) [DOI: 10.1016/j.solmat.2008.02.008].
  12. F. C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, and E. Kold, Sol. Energy Mater. Sol. Cells 83, 293 (2004) [DOI: 10.1016/ j.solmat.2004.02.031].
  13. E. Bundgaard and F. C. Krebs, Pol. Bull. 55, 157 (2005) [DOI: 10.1007/s00289-005-0423-0].
  14. F. C. Krebs, J. Alstrup, M. Biancardo, and H. Spanggaard, Proc. SPIE 5938, 593804 (2005) [DOI: 10.1117/12.613438].
  15. F. C. Krebs, M. Biancardo, B. Winther-Jensen, and H. Spanggaard, J. Alstrup, Sol. Energy Mater. Sol. Cells 90, 1058 (2006) [DOI: 10.1016/j.solmat.2005.06.003].
  16. B. Winther-Jensen and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 123 (2006) [DOI: 10.1016/j.solmat.2005.02.004].
  17. F. C. Krebs, H. Spanggaard, T. Kjær, M. Biancardo, and J. Alstrup, Mater. Sci. Eng. B 138, 106 (2007) [DOI: 10.1016/ j.mseb.2006.06.008].
  18. E. Bundgaard and F.C. Krebs, Sol. Energy Mater. Sol. Cells 91, 1019 (2007) [DOI: 10.1016/j.solmat.2007.01.013].
  19. M. H. Petersen, O. Hagemann, K. T. Nielsen, M. Jørgensen, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 91, 996 (2007) [DOI: 10.1016/j.solmat.2007.02.022].
  20. M. Andersen, J.E. Carle, N. Cruys-Bagger, M. R. Lilliedal, M. A. Hammond, B. Winther-Jensen, and F.C. Krebs, Sol. Energy Mater. Sol. Cells 91, 539 (2007) [DOI: 10.1016/j.solmat.2006.11.006].
  21. M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008) [DOI: 10.1016/j.solmat.2008.01.005].
  22. S.H. Park, A. Roy1, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, and A.J. Heeger, Nat. Photo. 3, 297 (2009) [DOI: 10.1038/nphoton.2009.69].
  23. J. Y. Kim, S.H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006) [DOI: 10.1002/ adma.200501825].
  24. F. C. Krebs and K. Norrman, Prog. Photovolt: Res. Appl. 15, 697 (2007) [DOI: 10.1002/pip.794].
  25. M.S. Ryu, H.J. Cha, and J. Jang, Sol. Energy Mater. Sol. Cells 94, 152 (2010) [DOI: 10.1016/j.solmat.2009.08.011].
  26. M.S.A. Abdou and S. Holdcroft, Macromolecules 26, 2954 (1993) [DOI: 10.1021/ma00063a047].

Cited by

  1. Device stability of inverted and conventional bulk heterojunction solar cells with MoO3 and ZnO nanoparticles as charge transport layers vol.14, pp.11, 2013, https://doi.org/10.1016/j.orgel.2013.07.016
  2. Extended interface layer concept for higher stability and improvement of life time in bulk heterojunction solar cells vol.5, pp.2, 2015, https://doi.org/10.1063/1.4907986
  3. Performance of organic photovoltaic devices in the presence of buffer layers vol.65, pp.3, 2014, https://doi.org/10.3938/jkps.65.303
  4. Conducting Polymer Material Characterization Using High Frequency Planar Transmission Line Measurement vol.13, pp.5, 2012, https://doi.org/10.4313/TEEM.2012.13.5.237
  5. Effect of chemical modifications on the electronic structure of poly(3-hexylthiophene) vol.51, pp.10, 2013, https://doi.org/10.1002/polb.23274
  6. Semi-transparent organic inverted photovoltaic cells with solution processed top electrode vol.108, 2013, https://doi.org/10.1016/j.solmat.2012.09.002
  7. [60]Fulleropyrrolidines Bearing π-Conjugated Moiety for Polymer Solar Cells: Contribution of the Chromophoric Substituent on C60 to the Photocurrent vol.4, pp.11, 2012, https://doi.org/10.1021/am301773t