References
- B. Kippelen and J. L. Bredas. "Organic photovoltaics", Energy & Environmental Science Vol. 2, No. 3, pp. 251-261, 2009. https://doi.org/10.1039/b812502n
- T. C. Sum and N. Mathews. "Advancements in perovskite solar cells: photophysics behind the photovoltaics", Energy & Environmental Science Vol. 7, No. 8, pp. 2518-2534, 2014. https://doi.org/10.1039/C4EE00673A
- A. G. Pattantyus-Abraham, et al., "Depleted-heterojunction colloidal quantum dot solar cells", ACS nano Vol. 4, No. 6, pp. 3374-3380, 2010. https://doi.org/10.1021/nn100335g
- C.-C. Chueh, et al., "Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells", Energy & Environmental Science Vol. 8, No. 4, pp. 1160-1189, 2015. https://doi.org/10.1039/C4EE03824J
- Z. Yin, et al., "Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives", Advanced Science Vol. No. pp. 2016.
- S. H. Park, et al., "Bulk heterojunction solar cells with internal quantum efficiency approaching 100&percnt", Nature photonics Vol. 3, No. 5, pp. 297-302, 2009. https://doi.org/10.1038/nphoton.2009.69
- S.-W. Baek, et al., "Au@ Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells", ACS nano Vol. 8, No. 4, pp. 3302-3312, 2014. https://doi.org/10.1021/nn500222q
- W. J. da Silva, et al., "Transparent flexible organic solar cells with 6.87% efficiency manufactured by an all-solution process", Nanoscale Vol. 5, No. 19, pp. 9324-9329, 2013. https://doi.org/10.1039/c3nr03011c
- H. Zhou, et al., "Conductive Conjugated Polyelectrolyte as Hole-Transporting Layer for Organic Bulk Heterojunction Solar Cells", Advanced Materials Vol. 26, No. 5, pp. 780-785, 2014. https://doi.org/10.1002/adma.201302845
- S. Murase and Y. Yang. "Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method", Advanced Materials Vol. 24, No. 18, pp. 2459-2462, 2012. https://doi.org/10.1002/adma.201104771
- K. Zilberberg, et al., "Solution processed vanadium pentoxide as charge extraction layer for organic solar cells", Advanced Energy Materials Vol. 1, No. 3, pp. 377-381, 2011. https://doi.org/10.1002/aenm.201100076
- H. Choi, et al., "Solution processed WO 3 layer for the replacement of PEDOT: PSS layer in organic photovoltaic cells", Organic Electronics Vol. 13, No. 6, pp. 959-968, 2012. https://doi.org/10.1016/j.orgel.2012.01.033
- Q. Xu, et al., "High-Performance Polymer Solar Cells with Solution-Processed and Environmentally Friendly CuO x Anode Buffer Layer", ACS applied materials & interfaces Vol. 5, No. 21, pp. 10658-10664, 2013. https://doi.org/10.1021/am402745t
- J. Zhang, et al., "Efficient and stable polymer solar cells with annealing-free solution-processible NiO nanoparticles as anode buffer layers", Journal of Materials Chemistry C Vol. 2, No. 39, pp. 8295-8302, 2014. https://doi.org/10.1039/C4TC01302F
- X. Tu, et al., "Solution-Processed and Low-Temperature Annealed CrO x as Anode Buffer Layer for Efficient Polymer Solar Cells", The Journal of Physical Chemistry C Vol. 118, No. 18, pp. 9309-9317, 2014. https://doi.org/10.1021/jp411675t
- Z. a. Tan, et al., "Solution-Processed Rhenium Oxide: A Versatile Anode Buffer Layer for High Performance Polymer Solar Cells with Enhanced Light Harvest", Advanced Energy Materials Vol. 4, No. 1, pp. 2014.
- D. Yang, et al., "Chemically modified graphene oxides as a hole transport layer in organic solar cells", Chemical Communications Vol. 48, No. 65, pp. 8078-8080, 2012. https://doi.org/10.1039/c2cc33829g
- D. Yang, et al., "Work-Function-Tunable Chlorinated Graphene Oxide as an Anode Interface Layer in High-Efficiency Polymer Solar Cells", Advanced Energy Materials Vol. 4, No. 15, pp. 2014.
- Y. H. Chao, et al., "Solution-Processed (Graphene Oxide)-(d0 Transition Metal Oxide) Composite Anodic Buffer Layers toward High-Performance and Durable Inverted Polymer Solar Cells", Advanced Energy Materials Vol. 3, No. 10, pp. 1279-1285, 2013. https://doi.org/10.1002/aenm.201300430
- F. Jin, et al., "Improvement in power conversion efficiency and long-term lifetime of organic photovoltaic cells by using bathophenanthroline/molybdenum oxide as compound cathode buffer layer", Solar Energy Materials and Solar Cells Vol. 117, No. pp. 189-193, 2013. https://doi.org/10.1016/j.solmat.2013.05.007
- D. Chen, et al., "A water-processable organic electron-selective layer for solution-processed inverted organic solar cells", Applied Physics Letters Vol. 104, No. 5, pp. 053304, 2014. https://doi.org/10.1063/1.4864622
- A. Li, et al., "Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode", Applied Physics Letters Vol. 104, No. 12, pp. 123303, 2014. https://doi.org/10.1063/1.4870096
- K. Cnops, et al., "8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer", Nature communications Vol. 5, No. pp. 2014.
- Q. Chen, et al., "Finely tailored performance of inverted organic photovoltaics through layer-by-layer interfacial engineering", ACS applied materials & interfaces Vol. 3, No. 10, pp. 3962-3970, 2011. https://doi.org/10.1021/am200849r
- D. Chen, et al., "Novel Cathode Interlayers Based on Neutral Alcohol-Soluble Small Molecules with a Triphenylamine Core Featuring Polar Phosphonate Side Chains for High-Performance Polymer Light-Emitting and Photovoltaic Devices", Macromolecular rapid communications Vol. 34, No. 7, pp. 595-603, 2013. https://doi.org/10.1002/marc.201200812
- X. Zhao, et al., "Application of biuret, dicyandiamide, or urea as a cathode buffer layer toward the efficiency enhancement of polymer solar cells", ACS applied materials & interfaces Vol. 6, No. 6, pp. 4329-4337, 2014. https://doi.org/10.1021/am500013s
- Z. He, et al., "Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure", Nature Photonics Vol. 6, No. 9, pp. 591-595, 2012. https://doi.org/10.1038/nphoton.2012.190
- Z. He, et al., "Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor", Advanced Materials Vol. 23, No. 27, pp. 3086-3089, 2011. https://doi.org/10.1002/adma.201101319
- J. Liu, et al., "Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells", Advanced Materials Vol. 24, No. 17, pp. 2228-2233, 2012. https://doi.org/10.1002/adma.201104945
- Z.-G. Zhang, et al., "Poly (ethylene glycol) modified [60] fullerene as electron buffer layer for high-performance polymer solar cells", Applied Physics Letters Vol. 102, No. 14, pp. 143902, 2013. https://doi.org/10.1063/1.4801923
- J. Zhang, et al., "Journal of Materials Chemistry A", integration Vol. 9, No. pp. 22, 2013.
- X. Li, et al., "High performance polymer solar cells with a polar fullerene derivative as the cathode buffer layer", Journal of Materials Chemistry A Vol. 1, No. 40, pp. 12413-12416, 2013. https://doi.org/10.1039/c3ta12875j
- Z. A. Page, et al., "Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency", Science Vol. 346, No. 6208, pp. 441-444, 2014. https://doi.org/10.1126/science.1255826
- S. Chen, et al., "Metal oxides for interface engineering in polymer solar cells", Journal of Materials Chemistry Vol. 22, No. 46, pp. 24202-24212, 2012. https://doi.org/10.1039/c2jm33838f
- O. Pachoumi, et al., "Improved performance and stability of inverted organic solar cells with sol-gel processed, amorphous mixed metal oxide electron extraction layers comprising alkaline earth metals", Advanced Energy Materials Vol. 3, No. 11, pp. 1428-1436, 2013. https://doi.org/10.1002/aenm.201300308
- Z. Yin, et al., "Bandgap Tunable Zn1-xMgxO Thin Films as Highly Transparent Cathode Buffer Layers for High-Performance Inverted Polymer Solar Cells", Advanced Energy Materials Vol. 4, No. 7, pp. 2014.
- T. Stubhan, et al., "Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer", Organic Electronics Vol. 12, No. 9, pp. 1539-1543, 2011. https://doi.org/10.1016/j.orgel.2011.05.027
- K.-S. Shin, et al., "Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution", The Journal of Physical Chemistry C Vol. 114, No. 37, pp. 15782-15785, 2010. https://doi.org/10.1021/jp1013658
- A. Puetz, et al., "Organic solar cells incorporating buffer layers from indium doped zinc oxide nanoparticles", Solar Energy Materials and Solar Cells Vol. 95, No. 2, pp. 579-585, 2011. https://doi.org/10.1016/j.solmat.2010.09.020
- T. Z. Oo, et al., "Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell", Organic Electronics Vol. 13, No. 5, pp. 870-874, 2012. https://doi.org/10.1016/j.orgel.2012.01.011
- S. Trost, et al., "Room-temperature solution processed SnO x as an electron extraction layer for inverted organic solar cells with superior thermal stability", Journal of Materials Chemistry Vol. 22, No. 32, pp. 16224-16229, 2012. https://doi.org/10.1039/c2jm33445c
- X. Li, et al., "Over 1.1 eV Workfunction Tuning of Cesium Intercalated Metal Oxides for Functioning as Both Electron and Hole Transport Layers in Organic Optoelectronic Devices", Advanced Functional Materials Vol. 24, No. 46, pp. 7348-7356, 2014. https://doi.org/10.1002/adfm.201401969
-
Y. Zhou, et al., "Inverted organic solar cells with ITO electrodes modified with an ultrathin
$Al_2O_3$ buffer layer deposited by atomic layer deposition", Journal of Materials Chemistry Vol. 20, No. 29, pp. 6189-6194, 2010. https://doi.org/10.1039/c0jm00662a - Z. Yin, et al., "Solution-derived poly (ethylene glycol)-TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells", Nano Research Vol. 8, No. 2, pp. 456-468, 2015. https://doi.org/10.1007/s12274-014-0615-8
- S. B. Jo, et al., "Carrier-Selectivity-Dependent Charge Recombination Dynamics in Organic Photovoltaic Cells with a Ferroelectric Blend Interlayer", Advanced Energy Materials Vol. 5, No. 19, pp. 2015.
- S. Woo, et al., "8.9% Single-Stack Inverted Polymer Solar Cells with Electron-Rich Polymer Nanolayer-Modified Inorganic Electron-Collecting Buffer Layers", Advanced Energy Materials Vol. 4, No. 7, pp. 2014.
- A. K. K. Kyaw, et al., "Efficient Solution-Processed Small-Molecule Solar Cells with Inverted Structure", Advanced Materials Vol. 25, No. 17, pp. 2397-2402, 2013. https://doi.org/10.1002/adma.201300295
- J. H. Rhee, et al., "A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites", NPG Asia Materials Vol. 5, No. 10, pp. e68, 2013. https://doi.org/10.1038/am.2013.53
- M. M. Lee, et al., "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science Vol. 338, No. 6107, pp. 643-647, 2012. https://doi.org/10.1126/science.1228604
- W. H. Nguyen, et al., "Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro (TFSI) 2 in perovskite and dye-sensitized solar cells", Journal of the American Chemical Society Vol. 136, No. 31, pp. 10996-11001, 2014. https://doi.org/10.1021/ja504539w
- S. Kazim, et al., "A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells", Energy & Environmental Science Vol. 8, No. 6, pp. 1816-1823, 2015. https://doi.org/10.1039/C5EE00599J
- G. Gong, et al., "Dopant-free 3, 3'-bithiophene derivatives as hole transport materials for perovskite solar cells", Journal of Materials Chemistry A Vol. 4, No. 10, pp. 3661-3666, 2016. https://doi.org/10.1039/C6TA00032K
- J. H. Heo, et al., "Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors", Nature Photonics Vol. 7, No. 6, pp. 486-491, 2013. https://doi.org/10.1038/nphoton.2013.80
- P. Qin, et al., "Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency", Nature communications Vol. 5, No. pp. 2014.
- K.-C. Wang, et al., "p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells", Scientific reports Vol. 4, No. pp. 2014.
- J. H. Kim, et al., "High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer", Advanced Materials Vol. 27, No. 4, pp. 695-701, 2015. https://doi.org/10.1002/adma.201404189
-
K.-C. Wang, et al., "Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/
$CH_3NH_3PbI_3$ perovskite heterojunction solar cells", ACS applied materials & interfaces Vol. 6, No. 15, pp. 11851-11858, 2014. https://doi.org/10.1021/am503610u - A. Yella, et al., "Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency", Nano letters Vol. 14, No. 5, pp. 2591-2596, 2014. https://doi.org/10.1021/nl500399m
- K. Wojciechowski, et al., "Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency", Energy & Environmental Science Vol. 7, No. 3, pp. 1142-1147, 2014. https://doi.org/10.1039/C3EE43707H
- H. Zhou, et al., "Interface engineering of highly efficient perovskite solar cells", Science Vol. 345, No. 6196, pp. 542-546, 2014. https://doi.org/10.1126/science.1254050
- A. Abate, et al., "Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells", Nano letters Vol. 14, No. 6, pp. 3247-3254, 2014. https://doi.org/10.1021/nl500627x
- N. K. Noel, et al., "Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites", ACS nano Vol. 8, No. 10, pp. 9815-9821, 2014. https://doi.org/10.1021/nn5036476
- M.-J. Choi, et al., "Tailoring of the PbS/metal interface in colloidal quantum dot solar cells for improvements of performance and air stability", Energy & Environmental Science Vol. 7, No. 9, pp. 3052-3060, 2014. https://doi.org/10.1039/C4EE00502C
- K. W. Kemp, et al., "Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots", Advanced Energy Materials Vol. 3, No. 7, pp. 917-922, 2013. https://doi.org/10.1002/aenm.201201083