DOI QR코드

DOI QR Code

Interfacial Engineering Strategies for Third-Generation Photovoltaics

차세대 태양전지의 계면 개질 전략

  • Lim, Hunhee (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Choi, Min-Jae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jung, Yeon Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 임훈희 (신소재공학과, 한국과학기술원) ;
  • 최민재 (신소재공학과, 한국과학기술원) ;
  • 정연식 (신소재공학과, 한국과학기술원)
  • Received : 2016.08.30
  • Accepted : 2016.09.06
  • Published : 2016.09.30

Abstract

Third-generation photovoltaics are of low cost based on solution processes and are targeting a high efficiency. To meet the commercial demand, however, significant improvements of both efficiency and stability are required. In this sense, interfacial engineering can be useful key to solve these issues because trap sites and interfacial energy barrier and/or chemical instability at organic/organic and organic/inorganic interfaces are critical factors of efficiency and stability degradation. Here, we thoroughly review the interfacial engineering strategies applicable to three representative third-generation photovoltaics - organic, perovskite, colloidal quantum dot solar cell devices.

Keywords

References

  1. B. Kippelen and J. L. Bredas. "Organic photovoltaics", Energy & Environmental Science Vol. 2, No. 3, pp. 251-261, 2009. https://doi.org/10.1039/b812502n
  2. T. C. Sum and N. Mathews. "Advancements in perovskite solar cells: photophysics behind the photovoltaics", Energy & Environmental Science Vol. 7, No. 8, pp. 2518-2534, 2014. https://doi.org/10.1039/C4EE00673A
  3. A. G. Pattantyus-Abraham, et al., "Depleted-heterojunction colloidal quantum dot solar cells", ACS nano Vol. 4, No. 6, pp. 3374-3380, 2010. https://doi.org/10.1021/nn100335g
  4. C.-C. Chueh, et al., "Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells", Energy & Environmental Science Vol. 8, No. 4, pp. 1160-1189, 2015. https://doi.org/10.1039/C4EE03824J
  5. Z. Yin, et al., "Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives", Advanced Science Vol. No. pp. 2016.
  6. S. H. Park, et al., "Bulk heterojunction solar cells with internal quantum efficiency approaching 100&percnt", Nature photonics Vol. 3, No. 5, pp. 297-302, 2009. https://doi.org/10.1038/nphoton.2009.69
  7. S.-W. Baek, et al., "Au@ Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells", ACS nano Vol. 8, No. 4, pp. 3302-3312, 2014. https://doi.org/10.1021/nn500222q
  8. W. J. da Silva, et al., "Transparent flexible organic solar cells with 6.87% efficiency manufactured by an all-solution process", Nanoscale Vol. 5, No. 19, pp. 9324-9329, 2013. https://doi.org/10.1039/c3nr03011c
  9. H. Zhou, et al., "Conductive Conjugated Polyelectrolyte as Hole-Transporting Layer for Organic Bulk Heterojunction Solar Cells", Advanced Materials Vol. 26, No. 5, pp. 780-785, 2014. https://doi.org/10.1002/adma.201302845
  10. S. Murase and Y. Yang. "Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method", Advanced Materials Vol. 24, No. 18, pp. 2459-2462, 2012. https://doi.org/10.1002/adma.201104771
  11. K. Zilberberg, et al., "Solution processed vanadium pentoxide as charge extraction layer for organic solar cells", Advanced Energy Materials Vol. 1, No. 3, pp. 377-381, 2011. https://doi.org/10.1002/aenm.201100076
  12. H. Choi, et al., "Solution processed WO 3 layer for the replacement of PEDOT: PSS layer in organic photovoltaic cells", Organic Electronics Vol. 13, No. 6, pp. 959-968, 2012. https://doi.org/10.1016/j.orgel.2012.01.033
  13. Q. Xu, et al., "High-Performance Polymer Solar Cells with Solution-Processed and Environmentally Friendly CuO x Anode Buffer Layer", ACS applied materials & interfaces Vol. 5, No. 21, pp. 10658-10664, 2013. https://doi.org/10.1021/am402745t
  14. J. Zhang, et al., "Efficient and stable polymer solar cells with annealing-free solution-processible NiO nanoparticles as anode buffer layers", Journal of Materials Chemistry C Vol. 2, No. 39, pp. 8295-8302, 2014. https://doi.org/10.1039/C4TC01302F
  15. X. Tu, et al., "Solution-Processed and Low-Temperature Annealed CrO x as Anode Buffer Layer for Efficient Polymer Solar Cells", The Journal of Physical Chemistry C Vol. 118, No. 18, pp. 9309-9317, 2014. https://doi.org/10.1021/jp411675t
  16. Z. a. Tan, et al., "Solution-Processed Rhenium Oxide: A Versatile Anode Buffer Layer for High Performance Polymer Solar Cells with Enhanced Light Harvest", Advanced Energy Materials Vol. 4, No. 1, pp. 2014.
  17. D. Yang, et al., "Chemically modified graphene oxides as a hole transport layer in organic solar cells", Chemical Communications Vol. 48, No. 65, pp. 8078-8080, 2012. https://doi.org/10.1039/c2cc33829g
  18. D. Yang, et al., "Work-Function-Tunable Chlorinated Graphene Oxide as an Anode Interface Layer in High-Efficiency Polymer Solar Cells", Advanced Energy Materials Vol. 4, No. 15, pp. 2014.
  19. Y. H. Chao, et al., "Solution-Processed (Graphene Oxide)-(d0 Transition Metal Oxide) Composite Anodic Buffer Layers toward High-Performance and Durable Inverted Polymer Solar Cells", Advanced Energy Materials Vol. 3, No. 10, pp. 1279-1285, 2013. https://doi.org/10.1002/aenm.201300430
  20. F. Jin, et al., "Improvement in power conversion efficiency and long-term lifetime of organic photovoltaic cells by using bathophenanthroline/molybdenum oxide as compound cathode buffer layer", Solar Energy Materials and Solar Cells Vol. 117, No. pp. 189-193, 2013. https://doi.org/10.1016/j.solmat.2013.05.007
  21. D. Chen, et al., "A water-processable organic electron-selective layer for solution-processed inverted organic solar cells", Applied Physics Letters Vol. 104, No. 5, pp. 053304, 2014. https://doi.org/10.1063/1.4864622
  22. A. Li, et al., "Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode", Applied Physics Letters Vol. 104, No. 12, pp. 123303, 2014. https://doi.org/10.1063/1.4870096
  23. K. Cnops, et al., "8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer", Nature communications Vol. 5, No. pp. 2014.
  24. Q. Chen, et al., "Finely tailored performance of inverted organic photovoltaics through layer-by-layer interfacial engineering", ACS applied materials & interfaces Vol. 3, No. 10, pp. 3962-3970, 2011. https://doi.org/10.1021/am200849r
  25. D. Chen, et al., "Novel Cathode Interlayers Based on Neutral Alcohol-Soluble Small Molecules with a Triphenylamine Core Featuring Polar Phosphonate Side Chains for High-Performance Polymer Light-Emitting and Photovoltaic Devices", Macromolecular rapid communications Vol. 34, No. 7, pp. 595-603, 2013. https://doi.org/10.1002/marc.201200812
  26. X. Zhao, et al., "Application of biuret, dicyandiamide, or urea as a cathode buffer layer toward the efficiency enhancement of polymer solar cells", ACS applied materials & interfaces Vol. 6, No. 6, pp. 4329-4337, 2014. https://doi.org/10.1021/am500013s
  27. Z. He, et al., "Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure", Nature Photonics Vol. 6, No. 9, pp. 591-595, 2012. https://doi.org/10.1038/nphoton.2012.190
  28. Z. He, et al., "Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor", Advanced Materials Vol. 23, No. 27, pp. 3086-3089, 2011. https://doi.org/10.1002/adma.201101319
  29. J. Liu, et al., "Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells", Advanced Materials Vol. 24, No. 17, pp. 2228-2233, 2012. https://doi.org/10.1002/adma.201104945
  30. Z.-G. Zhang, et al., "Poly (ethylene glycol) modified [60] fullerene as electron buffer layer for high-performance polymer solar cells", Applied Physics Letters Vol. 102, No. 14, pp. 143902, 2013. https://doi.org/10.1063/1.4801923
  31. J. Zhang, et al., "Journal of Materials Chemistry A", integration Vol. 9, No. pp. 22, 2013.
  32. X. Li, et al., "High performance polymer solar cells with a polar fullerene derivative as the cathode buffer layer", Journal of Materials Chemistry A Vol. 1, No. 40, pp. 12413-12416, 2013. https://doi.org/10.1039/c3ta12875j
  33. Z. A. Page, et al., "Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency", Science Vol. 346, No. 6208, pp. 441-444, 2014. https://doi.org/10.1126/science.1255826
  34. S. Chen, et al., "Metal oxides for interface engineering in polymer solar cells", Journal of Materials Chemistry Vol. 22, No. 46, pp. 24202-24212, 2012. https://doi.org/10.1039/c2jm33838f
  35. O. Pachoumi, et al., "Improved performance and stability of inverted organic solar cells with sol-gel processed, amorphous mixed metal oxide electron extraction layers comprising alkaline earth metals", Advanced Energy Materials Vol. 3, No. 11, pp. 1428-1436, 2013. https://doi.org/10.1002/aenm.201300308
  36. Z. Yin, et al., "Bandgap Tunable Zn1-xMgxO Thin Films as Highly Transparent Cathode Buffer Layers for High-Performance Inverted Polymer Solar Cells", Advanced Energy Materials Vol. 4, No. 7, pp. 2014.
  37. T. Stubhan, et al., "Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer", Organic Electronics Vol. 12, No. 9, pp. 1539-1543, 2011. https://doi.org/10.1016/j.orgel.2011.05.027
  38. K.-S. Shin, et al., "Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution", The Journal of Physical Chemistry C Vol. 114, No. 37, pp. 15782-15785, 2010. https://doi.org/10.1021/jp1013658
  39. A. Puetz, et al., "Organic solar cells incorporating buffer layers from indium doped zinc oxide nanoparticles", Solar Energy Materials and Solar Cells Vol. 95, No. 2, pp. 579-585, 2011. https://doi.org/10.1016/j.solmat.2010.09.020
  40. T. Z. Oo, et al., "Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell", Organic Electronics Vol. 13, No. 5, pp. 870-874, 2012. https://doi.org/10.1016/j.orgel.2012.01.011
  41. S. Trost, et al., "Room-temperature solution processed SnO x as an electron extraction layer for inverted organic solar cells with superior thermal stability", Journal of Materials Chemistry Vol. 22, No. 32, pp. 16224-16229, 2012. https://doi.org/10.1039/c2jm33445c
  42. X. Li, et al., "Over 1.1 eV Workfunction Tuning of Cesium Intercalated Metal Oxides for Functioning as Both Electron and Hole Transport Layers in Organic Optoelectronic Devices", Advanced Functional Materials Vol. 24, No. 46, pp. 7348-7356, 2014. https://doi.org/10.1002/adfm.201401969
  43. Y. Zhou, et al., "Inverted organic solar cells with ITO electrodes modified with an ultrathin $Al_2O_3$ buffer layer deposited by atomic layer deposition", Journal of Materials Chemistry Vol. 20, No. 29, pp. 6189-6194, 2010. https://doi.org/10.1039/c0jm00662a
  44. Z. Yin, et al., "Solution-derived poly (ethylene glycol)-TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells", Nano Research Vol. 8, No. 2, pp. 456-468, 2015. https://doi.org/10.1007/s12274-014-0615-8
  45. S. B. Jo, et al., "Carrier-Selectivity-Dependent Charge Recombination Dynamics in Organic Photovoltaic Cells with a Ferroelectric Blend Interlayer", Advanced Energy Materials Vol. 5, No. 19, pp. 2015.
  46. S. Woo, et al., "8.9% Single-Stack Inverted Polymer Solar Cells with Electron-Rich Polymer Nanolayer-Modified Inorganic Electron-Collecting Buffer Layers", Advanced Energy Materials Vol. 4, No. 7, pp. 2014.
  47. A. K. K. Kyaw, et al., "Efficient Solution-Processed Small-Molecule Solar Cells with Inverted Structure", Advanced Materials Vol. 25, No. 17, pp. 2397-2402, 2013. https://doi.org/10.1002/adma.201300295
  48. J. H. Rhee, et al., "A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites", NPG Asia Materials Vol. 5, No. 10, pp. e68, 2013. https://doi.org/10.1038/am.2013.53
  49. M. M. Lee, et al., "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science Vol. 338, No. 6107, pp. 643-647, 2012. https://doi.org/10.1126/science.1228604
  50. W. H. Nguyen, et al., "Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro (TFSI) 2 in perovskite and dye-sensitized solar cells", Journal of the American Chemical Society Vol. 136, No. 31, pp. 10996-11001, 2014. https://doi.org/10.1021/ja504539w
  51. S. Kazim, et al., "A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells", Energy & Environmental Science Vol. 8, No. 6, pp. 1816-1823, 2015. https://doi.org/10.1039/C5EE00599J
  52. G. Gong, et al., "Dopant-free 3, 3'-bithiophene derivatives as hole transport materials for perovskite solar cells", Journal of Materials Chemistry A Vol. 4, No. 10, pp. 3661-3666, 2016. https://doi.org/10.1039/C6TA00032K
  53. J. H. Heo, et al., "Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors", Nature Photonics Vol. 7, No. 6, pp. 486-491, 2013. https://doi.org/10.1038/nphoton.2013.80
  54. P. Qin, et al., "Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency", Nature communications Vol. 5, No. pp. 2014.
  55. K.-C. Wang, et al., "p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells", Scientific reports Vol. 4, No. pp. 2014.
  56. J. H. Kim, et al., "High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer", Advanced Materials Vol. 27, No. 4, pp. 695-701, 2015. https://doi.org/10.1002/adma.201404189
  57. K.-C. Wang, et al., "Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/$CH_3NH_3PbI_3$ perovskite heterojunction solar cells", ACS applied materials & interfaces Vol. 6, No. 15, pp. 11851-11858, 2014. https://doi.org/10.1021/am503610u
  58. A. Yella, et al., "Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency", Nano letters Vol. 14, No. 5, pp. 2591-2596, 2014. https://doi.org/10.1021/nl500399m
  59. K. Wojciechowski, et al., "Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency", Energy & Environmental Science Vol. 7, No. 3, pp. 1142-1147, 2014. https://doi.org/10.1039/C3EE43707H
  60. H. Zhou, et al., "Interface engineering of highly efficient perovskite solar cells", Science Vol. 345, No. 6196, pp. 542-546, 2014. https://doi.org/10.1126/science.1254050
  61. A. Abate, et al., "Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells", Nano letters Vol. 14, No. 6, pp. 3247-3254, 2014. https://doi.org/10.1021/nl500627x
  62. N. K. Noel, et al., "Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites", ACS nano Vol. 8, No. 10, pp. 9815-9821, 2014. https://doi.org/10.1021/nn5036476
  63. M.-J. Choi, et al., "Tailoring of the PbS/metal interface in colloidal quantum dot solar cells for improvements of performance and air stability", Energy & Environmental Science Vol. 7, No. 9, pp. 3052-3060, 2014. https://doi.org/10.1039/C4EE00502C
  64. K. W. Kemp, et al., "Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots", Advanced Energy Materials Vol. 3, No. 7, pp. 917-922, 2013. https://doi.org/10.1002/aenm.201201083