• Title/Summary/Keyword: Photosynthetic photon flux

Search Result 120, Processing Time 0.026 seconds

Development of the Rotational Smart Lighting Control System Using Artificial Light for Plant Factory (식물공장을 위한 인공광 회전형 스마트 조명 제어시스템 개발)

  • Lee, Won-Sub;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1474-1479
    • /
    • 2012
  • Rotational smart lighting control system provides artificial light to plants on planting board by rotational lighting system. As the lighting system of existing plant factory has high cost problem due to the installation for many lighting equipments, the lighting system was developed to rotate less number of lighting equipments to reduce cost. In this paper, the illuminance, luminous flux and photosynthetic photon flux density(PPFD) that plants need to grow were calculated. And the light intensity at each measured location considering the rotational speed of blade were analyzed by the simulation and the experiment.

Effects of Six Antibiotics on the Activity of the Photosynthetic Apparatus and Ammonium Uptake of Thallus of Porphyra yezoensis

  • Oh, Min-Hyuk;Kang, Yun-Hee;Lee, Choon-Hwan;Chung, Ik-Kyo
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • The modern integrated fish-seaweed mariculture has been tested to reduce the environmental impacts of an intensive fed culture. To obtain the best seaweed bioremediation performance, the effects of therapeutants used for fish disease control on the selected seaweed species should be considered. As a selected seaweed, Porphyra yezoensis was tested with six commercial antibiotics including erythromycin thiocyanate_A, erythromycin thiocyanate_B, oxytetracycline, doxycycline, pefloxacin, and amoxicillin trihydrate under the batch incubation at a photon flux density of 10 $\mu$mol ${\cdot}m^{-2}\;{\cdot}\;s^{-1}$ at 15$^{\circ}C$. Among the tested commercial antibiotics, erythromycin thiocyanate_A, erythromycin thiocyanate_B, oxytetracycline, and doxycycline showed decreases in Fv/Fm, the photochemical efficiency of photosystem II, with a dose-dependant and time-dependant manner. From the quenching analysis of chlorophyll fluorescence, three differential patterns were observed in the antibiotics-treated Porphyra: (1) high nonphotochemical quenching (NPQ) and low photochemical quenching (qP) in the cases of Erythromycin thiocyanate_B and amoxicillin trihydrate, (2) high NPQ and high qP in the case of pefloxacin and (3) low NPQ and low qP in the case of oxytetracycline. These results indicated that antibiotics affected in various ways on the photosynthetic apparatus, reflecting differential lesion sites of antibiotics. In addition, the rates of ammonium uptake also decreased with a decrease of Fv/Fm in P. yezoensis thalli treated with erythromycin thiocyanate_B and oxytetracycline. Therefore, the four antibiotics mentioned could affect the bioremediation capacity of the selected seaweed species in the integrated fish-seaweed mariculture system due to the decrease of photosynthetic activity and the simultaneous decrease of ammonium uptake.

Effects of Soil Moisture Content on Leaf Water Potential and Photosynthesis in Soybean Plants (토양성분이 콩의 잎 수분포텐셜 및 광합성에 미치는 영향)

  • 류용환;이석하;김석동
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.168-172
    • /
    • 1996
  • The soil moisture content and its relation to plants may be important in determining the crop growth and yield. The present study was undertaken to evaluate the leaf water potential and photosynthetic activity in soybean plants as affected by the timing of soil water stress. The soybean variety, 'Tachinagaha', was grown in a pot. The 15 day-old seedlings were subject to the three levels of soil moisture content(25, 40 and 55%) for 25 days. Then the treated soybean plants were placed again at the level of 25% soil moisture content for 25 days, and were compared with the control which was well-watered at 40% level for whole growth period. Soybean plants grown under continuous drought showed higher apparent photosynthetic rate(AP) than those under well-watering /drought in the first /second water treatment, suggesting that AP was adjusted after previous acclimation to drought. Over a wide range of photosynthetic photon flux densities(PPFD), drought or excessive water stress resulted in the decrease in AP when compared with the control. AP and stomatal conductance were decreased in soybean plants subject to water deficit stress, suggesting that AP and stomatal conductance were more sensitive to drought than excessive water stress.

  • PDF

Growth Characteristics of Cucumber Scion and Pumpkin Rootstock under Different Levels of Light Intensity and Plug Cell Size under an Artificial Lighting Condition (인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성)

  • Jang, Yoonah;Lee, Hye Jin;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.

Chlorophyll Fluorescence, Chlorophyll Content, Graft-taking, and Growth of Grafted Cucumber Seedlings Affected by Photosynthetic Photon Flux of LED Lamps (LED 램프의 광합성유효광양자속이 오이접목묘의 엽록소형광, 엽록소함량, 활착 및 생장에 미치는 영향)

  • Kim, Hyeong Gon;Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2018
  • Chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings as affected by photosynthetic photon flux (PPF) of LED lamps were analyzed in this study. Four PPF levels, namely 25, 50, 100, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ were provided to investigate the effect of light intensity on the chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings. Air temperature, relative humidity, and photoperiod for graft-taking were maintained at $25^{\circ}C$, 90%, $16h{\cdot}d^{-1}$, respectively. Maximum quantum yield (Fv/Fm) of rootstock as affected by PPF was found to be 0.84-0.85 and there was no significant change in Fv/Fm. Even though Fv/Fm of scion measured at 2 days after grafting was lowered to 0.81-0.82, after then it gradually increased with increasing PPF. At 4 days after grafting, the chlorophyll content extracted from scion increased with increasing PPF. Graft-taking ratio of grafted cucumber seedlings was 90-95% as PPF was ranged from $25{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ to $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. However, the graft-taking ratio of grafted seedlings healed under PPF of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was decreased to 80%. Maximum PPF measured required for smooth joining of rootstock and scion was assumed to be $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. At healing stage of grafted cucumber seedlings, Fv/Fm of scion decreased and at least two days after grafting were required for rooting of grafted seedlings. Chlorophyll fluorescence response of rootstock and scion was linked to light irradiation. Therefore, it was concluded that physical environment including light and humidity during healing process of grafted seedlings should be controlled more precisely to facilitate root formation and to prevent scion from lowering Fv/Fm. Further studies are required to investigate the effects of root development and joining of vascular bundles of grafted seedlings on the chlorophyll content of scion.

Growth of Cucumber Plug Seedlings as Affected by Photoperiod and Photosynthetic Photon Flux$^{+}$ (오이 플러그묘의 생장에 미치는 광주기와 광합성유효광량자속의 영향$^{+}$)

  • 김용현;박현수
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.40-44
    • /
    • 2002
  • A prototype of closed-type transplant production system(CTTPS) with fully environmental control was developed to produce massively quality transplants. Four photosynthetic photon flux(PPF) levels of 200,300,400 and 500$\mu$mol . m$^{-2}$ .s$^{-1}$ , four photoperiod levels of 1816 h,12/12h, 9/15 h and 6/18 h were provided to analyze the growth and development of cucumber plug seedlings(Cucumis sativus L., cv. Kyuewosalichungiang) as affected by PPF and photoperiod in a CTTPS. Effect of photoperiod on the growth and development of cucumber plug seedlings produced in a CTTPS was higher than PPF, Stem diameters dry weight of shoot and roots number of leaves, leaf with and length, and SPAD value of cucumber plug seedlings produced in a CTTPS were significantly high as compared to the control. But stem length of plug seedlings produced in a CTTPS was shorter than those of the control. Growth characteristics of cucumber plug seedlings raised at photoperiod of 6/18 h and PPF of 200$\mu$mol . m$^{-2}$ .s$^{-1}$ were similar to the those of the control. These results suggest that cucumber quality transplant can be produced at relatively short photoperiod and low PPF, It means that the electric energy consumed for the production of cucumber plug seedlings in a CTTPS can be saved.

Improvement of Runner Plant Production by Increasing Photosynthetic Photon Flux during Strawberry Transplant Propagation in a Closed Transplant Production System (폐쇄형 육묘 시스템에서 딸기의 러너플랜트 생산 증진에 적합한 광합성유효광량자속)

  • Kim, Sung-Kyeom;Jeong, Mi-Seon;Park, Seon-Woo;Kim, Moo-Jung;Na, Hae-Young;Chun, Chang-Hoo
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.535-539
    • /
    • 2010
  • The formation and elongation of runners, growth of runner plants, and transplant propagation rates of 'Maehyang' strawberry were investigated at various photosynthetic photon flux (PPF) levels. Strawberry plants having $3.1{\pm}0.4$ leaves and $7.0{\pm}1.1mm$ of crown diameter were used as propagules and were cultured for 35 days in 9 transplant production modules using fluorescent lamps as artificial lighting sources. Applied PPF levels were $137.4{\pm}2.1$, $217.0{\pm}1.0$, and $274.7{\pm}8.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as measured on the surfaces of empty shelves. The numbers of runners and runner plants per propagule were the greatest at $280{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPF. The runner plant propagation rate was 0.27 plant/day/propagule at $280{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, which was significantly greater than that of conventional propagation methods. Results indicate that high PPF levels promotes the formation of runners and runner plants of strawberry and that the rapid propagation method with high PPF levels can be feasible for production of vigorous transplants in a closed transplant production system.

Variation of Photosynthetic Photon Flux in Commercial Plastic Greenhouses (상업용 플라스틱 온실의 광합성유효광량자속 변화)

  • Lee, Hyun-Woo;Kim, Young-Shik
    • Current Research on Agriculture and Life Sciences
    • /
    • v.30 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This study was conducted to provide data necessary for clearing up the way to be able to improve covering and management method of covering material in commercial plastic greenhouse. The photosynthetic photon flux(PPF) in representative 4 different commercial tomato greenhouses was measured and analyzed. The variation trend of daily integral PPF was in agreement with that of the duration of sunshine. Each of daily integral PPF for 4 different experimental greenhouses was quite dissimilar, and was less than the amount of PPF necessary to grow tomato. October to November of beginning of winter was a good season to replace covering material in order to secure more PPF during insufficient winter season in greenhouse. The main inside factors to interrupt PPF incidence were thermal screen, inside covering material, condensation receiver in greenhouse. The single wide span greenhouse covered with PO film was superior to the other experimental greenhouses in the aspect of PPF transmittance.

  • PDF

Effect of Seedling Quality and Growth after Transplanting of Korean Melon Nursed under LED light Sources and Intensity (LED 광원과 광도에 따른 참외의 묘소질 및 정식 후 생육 변화)

  • Lee, Ji Eun;Shin, Yong Seub;Do, Han Woo;Cheung, Jong Do;Kang, Young Hwa
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.294-301
    • /
    • 2016
  • This study was conducted to analyze the seedling quality of korean melon and the growth after transplanting of korean melon nursed under the LED sources. LED sources were RB7 (Red:Blue=14:2), RB3 (Red:Blue=12:4) and Blue(B=16). Photosynthetic photon flux density(PPFD) was 50, 100 and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The lighting treatment was started after graft-taken and was applied for 20 days at 4 hours(05:30 and 07:30, 17:30 and 19:30) per day. Plant height and stem diameter of scion were longer and thicker under a high ratio of blue light condition. Dry matter ratio and compactness were highest in RB3 compared to the other LED sources treatments. $CO_2$ exchange rate increased $5.44{\mu}molCO_2{\cdot}m^{-2}{\cdot}s^{-1}$ under RB7 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and dropped to negative values under control. PPFD $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of RB3 resulted in the longest plant height by 132.3cm and flowering ratio also was the highest by 75%.

Response of Nutrient Solution and Photosynthetic Photon Flux Density for Growth and Accumulation of Antioxidant in Agastache rugosa under Hydroponic Culture Systems (식물공장에서 양액의 종류 및 PPFD가 배초향의 생장 및 항산화 물질에 미치는 영향)

  • Kim, Sung Jin;Bok, Kwon Jung;Lam, Vu Phong;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.249-257
    • /
    • 2017
  • Agastache rugosa, is a perennial medicinal plant commonly used in Chinese herbalism, and may have anti-atherogenic and antibacterial properties. Here in this study, we investigated the growth and variations in antioxidant contents of A. rugosa in response to nutrient solution and photosynthetic photon flux density (PPFD) with artificial lighting for a hydroponics culture. Fluorescent light at 150, and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a 16/8 (light/dark) photoperiod, combined with four different nutrient solutions [developed by Horticulture experiment station in Japan (HES), University of Seoul (UOS), Europe vegetable research center (EVR), Otsuka-house 1A (OTS)], were used in a hydroponics culture system for 6 weeks. The shoot and root dry weights of A. rugosa grown with the OTS were significantly higher than those of other nutrient solutions. The amount of tilianin was the highest grown with the OTS, followed by EVR, HES, and UOS. Total acacetin content was the highest in A. rugosa grown under EVR which was statistically similar with OTS. The A. rugosa grown under $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD produced higher fresh weight and both acacetin and tilianin contents than that grown under $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. The present results suggested that OTS along with $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD could be an optimum growing condition for better growth and higher accumulation of tilianin and acacetin contents in A. rugosa with hydroponic culture systems in a plant factory.