DOI QR코드

DOI QR Code

Response of Nutrient Solution and Photosynthetic Photon Flux Density for Growth and Accumulation of Antioxidant in Agastache rugosa under Hydroponic Culture Systems

식물공장에서 양액의 종류 및 PPFD가 배초향의 생장 및 항산화 물질에 미치는 영향

  • Kim, Sung Jin (Department of Horticultural Science, Chungnam National University) ;
  • Bok, Kwon Jung (Department of Horticultural Science, Chungnam National University) ;
  • Lam, Vu Phong (Department of Horticultural Science, Chungnam National University) ;
  • Park, Jong Seok (Department of Horticultural Science, Chungnam National University)
  • Received : 2017.09.05
  • Accepted : 2017.09.22
  • Published : 2017.10.31

Abstract

Agastache rugosa, is a perennial medicinal plant commonly used in Chinese herbalism, and may have anti-atherogenic and antibacterial properties. Here in this study, we investigated the growth and variations in antioxidant contents of A. rugosa in response to nutrient solution and photosynthetic photon flux density (PPFD) with artificial lighting for a hydroponics culture. Fluorescent light at 150, and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a 16/8 (light/dark) photoperiod, combined with four different nutrient solutions [developed by Horticulture experiment station in Japan (HES), University of Seoul (UOS), Europe vegetable research center (EVR), Otsuka-house 1A (OTS)], were used in a hydroponics culture system for 6 weeks. The shoot and root dry weights of A. rugosa grown with the OTS were significantly higher than those of other nutrient solutions. The amount of tilianin was the highest grown with the OTS, followed by EVR, HES, and UOS. Total acacetin content was the highest in A. rugosa grown under EVR which was statistically similar with OTS. The A. rugosa grown under $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD produced higher fresh weight and both acacetin and tilianin contents than that grown under $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. The present results suggested that OTS along with $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD could be an optimum growing condition for better growth and higher accumulation of tilianin and acacetin contents in A. rugosa with hydroponic culture systems in a plant factory.

배초향은 항동맥경화나 항박테리아의 특성을 가지는 한약재에 널리 사용되는 영년생 약용식물이다. 연구의 목적은 수경재배에서 배양액의 종류와 PPFD값에 따른 배초향의 생장 및 항산화 물질의 변화를 조사하는 것이다. 배초향은 주야간 16:8 시간의 일장조건에서 150과 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD 조건과 일본원시(HES), 서울시립대(UOS), 유럽채소연구소(EVR), 오오츠카 배양액(OTS)을 이용하여 6주간 재배하였다. OTS 배양액조건에서 자란 배초향의 지상부 및 지하부 건물중은 다른 배양액 처리구와 비교하여 유의적으로 높았다. 배초향의 틸리아닌 함량은 OTS 처리에서 가장 높았으며 다음으로 EVR, HES, UOS 순서로 낮아졌다. 총 아카세틴의 함량은 EVR처리에서 가장 높았으나 OTS처리와는 유의적 차이를 보이지 않았다. 또한 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD 조건에서 자란 배초향은 PPFD 150처리구와 비교하여 유의적으로 생체중과 건물중이 증가하였으며 기능성 물질은 틸리아닌과 아카세틴의 함량도 높았다. 본 연구는 수경재배 방식을 이용하여 식물공장에서 배초향을 재배할 경우 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD 조건과 OTS 배양액 조건에서 경제적인 광원조건으로 최적 바이오매스 생산량과 틸라아닌과 아카세틴의 함량을 증가시킬 수 있을 것으로 제안한다.

Keywords

References

  1. Ahn, B., and C. B. Yang. 1991. Volatile flavor components of Bangah herb. Korean J. Food Sci. Technol. 23:582-586.
  2. Al-Dhabi, M., V. Arasu, S.J. Kim, M.R. Uddin, W.T. Park, S.Y. Lee, and S.U. Park. 2015. Methyl jasmonate- and light-induced glucosinolate and anthocyanin biosynthesis in radish seedlings. Natural Products Communications 10:1211-1214.
  3. Afreen, F., S.M.A. Zobayed, and T. Kozai. 2006. Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J. Pineal Res. 41:108-115. https://doi.org/10.1111/j.1600-079X.2006.00337.x
  4. Choi, K.S., and H.Y. Lee. 1999. Characteristics of useful components in the leaves of baechohyang (Agastache rugosa, O. Kuntze). J. Korean Soc. Food Sci. Nutr. 28:326-332 In Korean.
  5. Fanasca, S, G. Colla, G. Maiani, E. Venneria, Y. Rouphael, E. Azzini and F. Saccardo. 2006. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 54:4319-4325. https://doi.org/10.1021/jf0602572
  6. Han, D. S. 1987. Triterpenes from the root of Agastache rugosa. Korean J. Pharmacogn. 18:50-53 In Korean.
  7. Hernandez-Abreu, O., P. Castillo-Espana, I. Leon-Rivera, M. Ibarra-Barajas, R. Villalobos-Molina, J. Gonzalez-Christen, J. Vergara-Galicia, and S. Estrada-Soto. 2009. Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. Biochem. Pharmacol. 78:54-61. https://doi.org/10.1016/j.bcp.2009.03.016
  8. Hong, J.J., J.H. Choi, S.R. Oh, H.K. Lee, J.H. Park, K.Y. Lee, J.J. Kim, T.S. Jeong, and G.T. Oh. 2001. Inhibition of cytokine-induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. FEBS Lett. 495:142-147. https://doi.org/10.1016/S0014-5793(01)02379-1
  9. Kim Y.B., J.K. Kim, M.R. Uddin, H.H. Xu, W.T. Park, P.A. Tuan, X. Li, E. Chung, J.H. Lee, and S.U. Park. 2013. Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS ONE 8(5):e64199. https://doi.org/10.1371/journal.pone.0064199
  10. Kim, H.K., H.K. Lee, C.G. Shin, and H. Huh. 1999. HIV integrase inhibitory activity of Agastache rugosa. Arch. Pharm. Res. 22:520-523. https://doi.org/10.1007/BF02979163
  11. Kozai, T. 2013. Resource use efficiency of closed plant production system with artificial light:Concept, estimation and application to plant factory. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 89(10):447-461. https://doi.org/10.2183/pjab.89.447
  12. Kozai, T., K. Ohyama, and C. Chun. 2006. Commercialized closed systems with artificial lighting for plant production. Acta Hortic. 711:61-70.
  13. Kubota, C., C.A. Thomson, M. Wu, and J. Javanmardi. 2006. Controlled environments for production of value-added food crops with high phytochemical concentrations: lycopene in tomato as an example. HortScience 41:522-525.
  14. Lee, C., H. Kim, and Y. Kho. 2002. Agastinol and agastenol, novel lignans from Agastache rugosa and their evaluation in an apoptosis inhibition assay. J. Nat. Prod. 65:414-416. https://doi.org/10.1021/np010425e
  15. Lee, H.K., S.R. Oh, J.I. Kim, J.W. Kim, and C.O. Lee. 1995. Agastaquinone, a new cytotoxic diterpenoid quinone from Agastache rugosa. J. Nat. Prod. 58:1718-1721. https://doi.org/10.1021/np50125a011
  16. Li, X., Y.B. Kim, M.R. Uddin, S. Lee, S.J. Kim, and S.U. Park. 2013. Influence of light on the free amino acid content and ${\gamma}$-Aminobutyric acid synthesis in Brassica juncea seedlings. J. Agric. Food Chem. 61:8624-8631. https://doi.org/10.1021/jf401956v
  17. Lu, N., E.L. Bernardo, C. Tippayadarapanich, M. Takagaki, N. Kagawa, and W. Yamori. 2017. Growth and accumulation of secondary metabolites in perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front. Plant Sci. 708:1-12.
  18. Marin A., J.S. Rubio, V. Martinez, and M. I. Gil. 2009. Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. J. Sci. Food Agric. 89:1352-1359. https://doi.org/10.1002/jsfa.3594
  19. Mossi, A.J., G.F. Pauletti, L. Rota, S. Echeverrigaray, I.B.I. Barros, J.V. Oliveira, N. Paroul, and R.L. Cansian. 2011. Effect of aluminum concentration on growth and secondary metabolites production in three chemotypes of Cunila galioides Benth. Medicinal plant. Braz. J. Biol. 71:1003-1009.
  20. Nam, K.H., J.H. Choi, Y.J. Seo, Y.M. Lee, Y.S. Won, M.R. Lee, M.N. Lee, J.G. Park, Y.M. Kim, H.C. Kim, C.H. Lee, H.K. Lee, S.R. Oh, and G.T. Oh. 2006. Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Exp. Mol. Med. 38:445-452. https://doi.org/10.1038/emm.2006.52
  21. Nguyen, P.M. and E.D. Niemeyer. 2008. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.)," Brown Working Papers in the Arts and Sciences, Southwestern University, Vol. VIII. http://www.southwestern.edu/academic/bwp/vol8/niemeyer-vol8.pdf.
  22. Oh, H.M., Y.J. Kang, Y.S. Lee, M.K. Park, S.H. Kim, H.J. Kim, H.G. Seo, J.H. Lee, and K.C. Chang. 2006. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury. J. Ethnopharmacol. 103:229-235. https://doi.org/10.1016/j.jep.2005.08.030
  23. Park, J.S., S.J. Kim, H.J. Kim, J.M. Choi, and G.I. Lee. 2014. Photosynthetic characteristics and growth analysis of Angelica gigas according to difference hydroponics methods. CNU J. of Agri. Sci. 41:321-326.
  24. Park, S.Y., S.B. Oh, S.M. Kim, Y.Y. Cho, and M.M. Oh. 2016. Evaluating the effects of a newly developed nutrient solution on growth, antioxidants, and chicoric acid contents in Crepidiastrum denticulatum. Hortic. Environ. Biotechnol. 57:478-486. https://doi.org/10.1007/s13580-016-1060-2
  25. Seginer, I., and I. Ioslovich. 1999. Optimal spacing and cultivation intensity for an industrialized crop production system. Agric. Syst. 62:143-157. https://doi.org/10.1016/S0308-521X(99)00057-8
  26. Shin, S. 2004. Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch. Pharm. Res. 27:295-299. https://doi.org/10.1007/BF02980063
  27. Toor, R.k., G.P. Savage, and a. Heeb. 2006. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Composition and Analysis 19:20-27. https://doi.org/10.1016/j.jfca.2005.03.003
  28. Uddin, M.R., A.A. Thwe, Y.B. Kim, W.T. Park, S.C. Chae, and S.U. Park. 2013. Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in sorghum roots. J. Chem. Ecol. 39:712-722. https://doi.org/10.1007/s10886-013-0299-7
  29. Uddin. M.R., K.W. Park, Y.K. Kim, S.U. Park, and J.Y. Pyon. 2010. Enhancing sorgoleone levels in grain sorghum root exudates. J. Chem. Ecol. 36:914-922. https://doi.org/10.1007/s10886-010-9829-8
  30. Wu, M., and C. Kubota. 2008. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hort.116:122-129. https://doi.org/10.1016/j.scienta.2007.11.014
  31. Zobayed, S.M.A., F. Afreen, and T. Kozai. 2007. Phytochemical and physiological changes in the leaves of St. John's wort plants under a water stress condition. Environ. Exp. Bot. 59:109-116. https://doi.org/10.1016/j.envexpbot.2005.10.002