• Title/Summary/Keyword: Photorhabdus

Search Result 28, Processing Time 0.029 seconds

Development of "Bt-Plus" Biopesticide Using Entomopathogenic Bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) Metabolites (곤충병원세균(Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata)의 대사물질을 이용한 "비티플러스" 생물농약 개발)

  • Seo, Sam-Yeol;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.171-178
    • /
    • 2011
  • Bacillus thuringiensis (Bt) is a bacterial biopesticide against insect pests, mainly lepidopterans. Spodoptera exigua and Plutella xylostella exhibit significant decreases in Bt susceptibility in late larval instars. To enhance Bt pathogenicity, we used a mixture treatment of Bt and other bacterial metabolites which possessed significant immunosuppressive activities. Mixtures of Bt with culture broths of Xenorhabdus nematophila (Xn) or Photorhabdus temperata ssp. temperata (Ptt) significantly enhanced the Bt pathogenicity against late larval instars. Different ratios of Bt to bacterial culture broth had significant pathogenicities against last instar P. xylostella and S. exigua. Five compounds identified from the bacterial culture broth also enhanced Bt pathogenicity. After determining the optimal ratios, the mixture was applied to cabbage infested by late instar P. xylostella or S. exigua in greenhouse conditions. A mixture of Bt and Xn culture broth killed 100% of both insect pests when it was sprayed twice, while Bt alone killed less than 80% or 60% of P. xylostella and S. exigua, respectively. Other Bt mixtures, including Ptt culture broth or bacterial metabolites, also significantly increased pathogenicity in the semi-field assays. These results demonstrated that the Bt mixtures collectively names "Bt-Plus" can be developed into potent biopesticides to increase the efficacy of Bt.

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media (곤충병원세균(Photorhabdus temperata ssp. temperata) 유래 곤충 면역 억제물질 생성 비교 연구를 통한 저렴한 세균 배지 선발)

  • Seo, Sam-Yeol;Jang, Ho-Jin;Kim, Kun-Woo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.

MEDIA DEVELOPMENT FOR MASS PRODUCTION OF ENTOMOPATHOGENIC NEMTOIDE HETERORHABDITIS BACTERIOPHORA AS AN INSECTICIDE

  • Yoo, Sun-Kyun;Cho, Sung-Young;Kim, Seung-Jai;Randy Gaugler
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.107-110
    • /
    • 2001
  • The biological control potential of entomopathogenic nematodes (EPN) can be enhanced by improved culture efficiency. Optimization of media is a key factor for improving in vitro mass production of entomopathogenic nematodes. EPN yield was dependant of complex medium concentration, of which mixture is carbohydrates, lipids, proteins, salts, and growth factors, on the growth of Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescensLipids.

  • PDF

Submerged Monoxenic Culture Medium Development for Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens: Protein Sources

  • Cho, Chun-Hwi;Whang, Kyung-Sook;Gaugler, Randy;Yoo, Sun-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.869-873
    • /
    • 2011
  • Most medium formulations for improving culture of entomopathogenic nematodes (EPN) based on protein sources have used enriched media like animal feed such as dried egg yolk, lactalbumin, and liver extract, among other ingredients. Most results, however, showed unstable yields and longer production time. Many of the results do not show the detailed parameters of fermentation. Soy flour, cotton seed flour, corn gluten meal, casein powder, soytone, peptone, casein hydrolysates, and lactalbumin hydrolysate as protein sources were tested to determine the source to support optimal symbiotic bacteria and nematode growth. The protein hydrolysates selected did not improve bacterial cell mass compared with the yeast extract control, but soy flour was the best, showing 75.1% recovery and producing more bacterial cell number ($1.4{\times}10^9$/ml) than all other sources. The highest yield ($1.85{\times}10^5$ IJs/ml), yield coefficient ($1.67{\times}10^6$ IJs/g medium), and productivity ($1.32{\times}10^7$ IJs/l/day) were also achieved at enriched medium with soybean protein.

Comparison of Photorhabdus luminescens and Vibrio fischeri lux Fusions to Study Gene Expression Patterns

  • MITCHELL, ROBERT J.;AHN, JOO-MYUNG;GU, MAN BOCK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.48-54
    • /
    • 2005
  • A comparison of promoter fusions with the luxCDABE genes from Vibrio fischeri and Photorhabdus luminescens was made using promoters from several genes (katG, sodA, and pqi-5) of E. coli that are responsive to oxidative damage. The respective characteristics, such as the basal and maximum bioluminescence and the relative bioluminescence, were compared. E. coli strains carrying fusions of the promoters to P. luminescens lux showed higher basal and maximally induced bioluminescent levels than strains carrying the same promoter fused to the luxCDABE genes from V. fischeri. The sensitivities between the strains were similar, regardless of the luciferase used, but lower response ratios were seen from strains harboring the P. luminescens lux fusions. Furthermore, using the two katG::lux fusion strains, the bioluminescence from the P. luminescens lux fusion strain, DK1, was stable after reaching a maximum, while that of strain DPD2511 decreased very rapidly due to substrate limitation.

Immunosuppressive Activity of Cultured Broth of Entompathogenic Bacteria on the Beet Armyworm, Spodoptera exigua, and Their Mixture Effects with Bt Biopesticide on Insecticidal Pathogencity (파밤나방(Spodoptera exigua)에 대한 곤충병원세균류 배양액의 곤충면역억제활성 및 비티 생물농약과 혼합효과)

  • Kim, Jea-Min;Nalini, Madanagopal;Kim, Yong-Gyun
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.2
    • /
    • pp.184-191
    • /
    • 2008
  • Entomopathogenic bacteria (Xenorhabdus nematophila, X. sp. and Photorhabdus temperata subsp. temperata) isolated from entomopathogenic nematodes express potent insecticidal activity in insect hemocoel. They are also known to suppress insect immune mediation by inhibiting phospholipase $A_2$, leading to host immunosuppression. This study analyzed effects of their cultured broths on inhibiting insect immunosuppression. For this, we removed all bacterial cells using $0.2\;{\mu}m$ pore sized membrane from the bacteria-cultured broth. All three sterilized cultured media, in dose-dependent manners, significantly inhibited hemocyte-spreading behavior of 5th instar larvae of Spodoptera exigua. However, they showed differential inhibitory activities among different bacterial species, in which X. nematophila showed the most potent inhibitory activity. This immunosuppressive effect was applied to increase the pathogenicity of Bacillus thuringiensis (Bt). All three bacterial cultured broths including bacterial cells significantly potentiated Bt pathogenicity against young S. exigua larvae when each of them was orally administered in a mixture of low dose of Bt. Finally, we tested the effect of oral administration of the cultured media containing the immunosuppressive compound(s) secreted by the bacteria. The membrane-sterilized cultured broths were mixed with the low dose of Bt and then orally administered to the young S. exigua. Only the cultured medium of X. nematophila showed increase of Bt pathogenicity. These results indicated that the; cultured media of the three bacteria possessed immunosuppressive factor(s), which may act to potentiate Bt toxicity to young S. exigua larvae.

Genotoxicity Assay Using Chromosomally-Integrated Bacterial recA::Lux

  • Min, Ji-Ho;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.99-103
    • /
    • 2003
  • An Escherichia coli strain containing the recA promoter that fused to the luxCDABE operon originating from Photorhabdus luminescens was shown to respond sensitively to genotoxic stresses. Two different recombinant bacteria, one (DPDI 657) harboring a plasmid with the recA promoter that fused to the luxCDABE operon, and the other (DPD1710) containing a chromosomally-integrated recA promoter that fused with luxCDABE, were compared and it was found that the sensitivity of 'the two strains was significantly different in terms of their bioluminescent level, response time, and the minimum detectable concentration of a chemical causing DNA damaging stress. DPDI 710, with a chromosomally-integrated single copy, generally led to lower basal luminescence levels, faster responses, increased response ratios, and an enhanced sensitivity to mutagens, when compared to DPD 1657 with a multi-copy plasmid.

Characterization of gltA::luxCDABE Fusion in Escherichia coli as a Toxicity Biosensor

  • Ahn, Joo-Myung;Kim, Byoung-Chan;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.516-521
    • /
    • 2006
  • The use of gltA gene, as a new biomarker for environmental stress biomonitoring, was investigated because of its key position as the first enzyme of the tricarboxylic acid (TCA) cycle. A recombinant bioluminescent Escherichia coli strain, EBJM2, was constructed using a plasmid carrying the citrate synthase (gltA) promoter transcribing the Photorhabdus luminescens IuxCDABE genes (gltA::luxCDABE). The responses from this strain were studied with five different classes of toxicants: DNA damage chemicals, phenolics, oxidative-stress chemicals, PAHs, and organic solvents. EBJM2 responded strongly to DNA damage chemicals, such as mitomycin C (MMC) and methyl-nitro-nitrosoguanidine (MNNG) and nalidixic acid with the strongest responses. In contrast, tests with several compounds from the other four classes of toxicants gave no significant response. Therefore, EBJM2 was found to be sensitive to DNA damage chemicals.