Browse > Article
http://dx.doi.org/10.5656/KSAE.2010.49.4.409

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media  

Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University)
Jang, Ho-Jin (Department of Bioresource Sciences, Andong National University)
Kim, Kun-Woo (Department of Bioresource Sciences, Andong National University)
Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.49, no.4, 2010 , pp. 409-416 More about this Journal
Abstract
An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.
Keywords
Photorhabdus temperata temperata; Microbial pesticide; Bacillus thuringiensis(Bt); Plutella xylostella; Bacterial metabolite;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Shin, H. 1987. Biology of microorganisms. Hyungseol, Seoul, Korea, pp. 522-528.
2 Shrestha, S., Y.P. Hong and Y. Kim. 2010. Two chemical derivatives of bacterial metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13: 55-60.   DOI   ScienceOn
3 Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm, Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112.   DOI
4 Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782.   DOI
5 Stanley, D. 2000. Eicosanoids in invertebrate signal transduction systems. 277 pp. Princeton University Press, New Jersey.
6 Stanley, D. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44.   DOI
7 Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phosopholipase $A_2$ to induce host immunodepression. J. Insect Physiol. 89: 258-264.
8 Kwon, B. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41.   DOI
9 Park, S., G. Kim., M. Kim., Y. Kim., J. Kim, and H. Choi. 1997. Microbiological applications. Donghwa, Paju, Korea, pp. 61-82.
10 Miller, J. 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59: 42-51.   DOI
11 Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476.   DOI
12 Park, Y., Y. Yi and Y. Kim. 1999. Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea. J. Asia Pac. Entomol. 2: 105-111.   DOI
13 SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, NC.
14 Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392.   과학기술학회마을   DOI
15 Seo, S. and Y. Kim. 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49: 241-249.   과학기술학회마을   DOI
16 ffrench-Constant, R.H., N. Waterfield and P. Daborn. 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
17 Gillespie, J.P., M.R. Kanost and T. Trenczek. 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42: 611-643.   DOI
18 Jeon, C. and J. Gong. 1999. Microbial technology. Donghwa, Paju, Korea, pp. 191-208.
19 Herbert, E. E. and H. Goodrich-Blair. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat. Rev. Microbiol. 5: 634-646.   DOI
20 Huisman, G.W., R. Kolter. 1994. Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265: 537-539.   DOI
21 Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589.   DOI
22 Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337.   DOI
23 Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206.   DOI
24 Kim, J., M. Nalini and Y. Kim. 2008. Immunosuppressive activity of cultured broth of entomopathogenic bacteria on the beet armyworm, Spodoptera exigua, and their mixture effects with Bt biopesticide on insecticidal pathogenicity. Kor. J. Pestic. Sci. 12: 184-191.
25 Demain, A.L. 1998. Induction of microbial secondary metabolism. Intl. Microbiol. 1: 259-264.
26 Adams, B.J. and K.B. Nguyen. 2002. Taxonomy and systematics. pp. 1-33. In Entomopathogenic nematology, ed. by R. Gaugler. CABI Publishing, New York.
27 Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
28 Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199.   DOI
29 Dennis, E.A. 1994. Diversity of group types, regulation, and function of phospholipase $A_2$. J. Biol. Chem. 269: 13057-13060.
30 Dennis, E.A. 1997. The growing phospholipase $A_2$ superfamily of signal transduction enzymes. Trends Biochem. Sci. 22: 1-2.   DOI
31 Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58: 40-51.   DOI
32 Dunphy, G.B. and J.M. Webster. 1994. Interaction of Xenorhabdus nematophila subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30: 883-889.