Browse > Article

Immunosuppressive Activity of Cultured Broth of Entompathogenic Bacteria on the Beet Armyworm, Spodoptera exigua, and Their Mixture Effects with Bt Biopesticide on Insecticidal Pathogencity  

Kim, Jea-Min (Plant Medicine, School of Bioresource Sciences, Andong National University)
Nalini, Madanagopal (Plant Medicine, School of Bioresource Sciences, Andong National University)
Kim, Yong-Gyun (Plant Medicine, School of Bioresource Sciences, Andong National University)
Publication Information
The Korean Journal of Pesticide Science / v.12, no.2, 2008 , pp. 184-191 More about this Journal
Abstract
Entomopathogenic bacteria (Xenorhabdus nematophila, X. sp. and Photorhabdus temperata subsp. temperata) isolated from entomopathogenic nematodes express potent insecticidal activity in insect hemocoel. They are also known to suppress insect immune mediation by inhibiting phospholipase $A_2$, leading to host immunosuppression. This study analyzed effects of their cultured broths on inhibiting insect immunosuppression. For this, we removed all bacterial cells using $0.2\;{\mu}m$ pore sized membrane from the bacteria-cultured broth. All three sterilized cultured media, in dose-dependent manners, significantly inhibited hemocyte-spreading behavior of 5th instar larvae of Spodoptera exigua. However, they showed differential inhibitory activities among different bacterial species, in which X. nematophila showed the most potent inhibitory activity. This immunosuppressive effect was applied to increase the pathogenicity of Bacillus thuringiensis (Bt). All three bacterial cultured broths including bacterial cells significantly potentiated Bt pathogenicity against young S. exigua larvae when each of them was orally administered in a mixture of low dose of Bt. Finally, we tested the effect of oral administration of the cultured media containing the immunosuppressive compound(s) secreted by the bacteria. The membrane-sterilized cultured broths were mixed with the low dose of Bt and then orally administered to the young S. exigua. Only the cultured medium of X. nematophila showed increase of Bt pathogenicity. These results indicated that the; cultured media of the three bacteria possessed immunosuppressive factor(s), which may act to potentiate Bt toxicity to young S. exigua larvae.
Keywords
Bacillus thuringiensis; entomopathogenic bacteria; immune; Photorhabdus temperata temperata; Spodoptera exigua; Xenorhabdus nematophila;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Clark, K.D., Y. Kim and M.R. Strand (2005) Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. J. Insect Physiol. 51:587-596   DOI   ScienceOn
2 Dennis, E.A. (1997) The growing phospholipase A2 superfamily of signal transduction enzymes. Trends. Biochem. Sci. 22:1-2   DOI   ScienceOn
3 Dunphy, G.B. and J.M. Webster (1984) Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30:883-889   DOI   ScienceOn
4 ffrench-Constant, R.H., N. Waterfield and P. Daborn (2005) Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive Molecular Insect Science (eds. L.I. Gilbert, I. Kostas and S.S. Gill), Elsevier, New York
5 Ji, D., Y. Yi and Y. Kim (2004a) 16S rDNA sequence and biochemical characters of a Korean isolate of Xenorhabdus nematophila. J. Asia-Pacific Entomol. 7:105-111   DOI
6 Lord, J.C., S. Anderson and D.W. Stanley (2002) Eicosanoids mediate Manduca sexta cellular response to the fungal pathogen Beauveria bassiana: a role for lipoxygenase pathway. Arch. Insect Biochem. Physiol. 51:46-54   DOI   ScienceOn
7 Stanley, D. (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51:25-44   DOI   ScienceOn
8 Kwon, S. and Y. Kim (2007) Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42:72-76   DOI   ScienceOn
9 Bae, S. and Y. Kim (2003) Lysozyme of the beet armyworm, Spodoptera exigua: activity induction and cDNA structure. Comp. Biochem. Physiol. 135B:511-519
10 Forst, S., B. Dowds, N. Boemare and E. Stackebrandt (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51:47-72   DOI   ScienceOn
11 Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89:258-264   DOI   ScienceOn
12 Buyukguzel, E., H. Tunaz, D. Stanley and K. Buyukguzel (2007) Eicosanoids mediate Galleria mellonella cellular immune response to viral infection. J. Insect Physiol 53:99-105   DOI   ScienceOn
13 Gahan, L.J., F. Gould and D.G. Heckel (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:857-860   DOI   ScienceOn
14 Nalini, M., Y. Lee and Y. Kim (2007) Pyriproxyfen inhibits hemocytic phagocytosis of the beet armyworm. Spodoptera exigua. Kor. J. Pesti. Sci. 11:164-170   과학기술학회마을
15 Jung, S. and Y. Kim (2006) Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39:201-209   DOI   ScienceOn
16 Kang, S., S. Han and Y. Kim (2004) Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia-Pacific Entomol. 7:331-337   DOI
17 Shrestha, S. and Y. Kim (2007b) Factors affecting the activation of hemolymph prophenoloxidase of Spodoptera exigua (Lepidoptera: Noctuidae). J. Asia-Pacific Entomol. 10:131-135   과학기술학회마을   DOI   ScienceOn
18 고현관, 이상계, 이비파, 최귀문, 김정화 (1991) 인공사료에 의한 파밤나방의 대량사육법. 한응곤지 29:180-183
19 Park, Y. and Y. Kim (2000) Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46:1469-1476   DOI   ScienceOn
20 Boemare, N. (2002) Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. pp. 35-56, In Entomopathogenic Nematology (ed. R. Gaugler), CABI Publishing, New York
21 Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Physiol. 38:99-112   DOI   ScienceOn
22 Kaya, H.K. and R. Gaugler (1993) Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181-206   DOI   ScienceOn
23 Kwon, B. and Y. Kim (2008) Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. (In press)
24 Rajagopal, R., S. Sivakumar, N. Agrawal, P. Malhotra and R.K. Bhatnagar (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA established its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem. 277:46849-46851   DOI   ScienceOn
25 Akhurst, R.J. (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121:303-309
26 Shrestha, S. and Y. Kim (2007a) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A2. J. Invertebr. Pathol. 96:64-70   DOI   ScienceOn
27 Adams, B.J. and K.B. Nguyen (2002) Taxonomy and systematics. pp. 1-33, In Entomopathogenic Nematology (ed. R. Gaugler), CABI Publishing, New York
28 Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim (2004b) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239:241-248   DOI   ScienceOn
29 Van Rie, J., S. Jansens, H. Hofte, D. Degheele and H. Van Mellaert (1989) Specificity of Bacillus thuringiensis-endotoxins. Importance of specific receptors on the brush border membrane of the midgut of target insects. Eur. J. Biochem. 186:239-247   DOI   ScienceOn
30 Gill, M. and D. Ellar (2002) Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Mol. Biol. 11:619-625   DOI   ScienceOn
31 Hoffmann, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert (1988) Specificity of Bacillus thuringiensis-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midgets. Proc. Natl. Acad. Sci. USA 85:7844-7848
32 Park, Y. and Y. Kim (2003) Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54:134-142   DOI   ScienceOn
33 배수일, 권성진, 김용균 (2007) 유약호르몬 동력제 pyriproxyfen의 파밤나방(Spodoptera exigua) 혈구세포 활착행동에 대한 억제 효과. 자연자원연구 7:48-53
34 Ji, D. and Y. Kim (2004) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 50:489-496   DOI   ScienceOn
35 SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C
36 Dunphy, G.B. and J.M. Webster (1991) Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58:40-51   DOI
37 Garcia, E.S., E.M.M. Machado and P. Azambuja (2004) Effects of eicosanoid biosynthesis inhibitors on the prophenoloxidase- activating system and microaggregation reactions in the hemolymph of Rhodnius prolixus infected with Trypanosoma rangeli. J. Insect Physiol. 50:157-165   DOI   ScienceOn
38 Gillespie, J.P., M.R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611-643   DOI   ScienceOn
39 Raymond, M. (1985) Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM. Ser. Ent. Med. et Parasitol. 22:117-121
40 Dennis, E.A. (1994) Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269:13057-13060
41 Stanley, D. (2000) Eicosanoids in invertebrate signal transduction systems. Priceton University Press, New Jersey