Browse > Article

Comparison of Photorhabdus luminescens and Vibrio fischeri lux Fusions to Study Gene Expression Patterns  

MITCHELL, ROBERT J. (National Research Laboratory on Environmental Biotechnology, Depart. Environmental Science and Engineering, Institute of Science and Technology (GIST))
AHN, JOO-MYUNG (National Research Laboratory on Environmental Biotechnology, Depart. Environmental Science and Engineering, Institute of Science and Technology (GIST))
GU, MAN BOCK (National Research Laboratory on Environmental Biotechnology, Depart. Environmental Science and Engineering, Institute of Science and Technology (GIST))
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.1, 2005 , pp. 48-54 More about this Journal
Abstract
A comparison of promoter fusions with the luxCDABE genes from Vibrio fischeri and Photorhabdus luminescens was made using promoters from several genes (katG, sodA, and pqi-5) of E. coli that are responsive to oxidative damage. The respective characteristics, such as the basal and maximum bioluminescence and the relative bioluminescence, were compared. E. coli strains carrying fusions of the promoters to P. luminescens lux showed higher basal and maximally induced bioluminescent levels than strains carrying the same promoter fused to the luxCDABE genes from V. fischeri. The sensitivities between the strains were similar, regardless of the luciferase used, but lower response ratios were seen from strains harboring the P. luminescens lux fusions. Furthermore, using the two katG::lux fusion strains, the bioluminescence from the P. luminescens lux fusion strain, DK1, was stable after reaching a maximum, while that of strain DPD2511 decreased very rapidly due to substrate limitation.
Keywords
P. luminescens; V. fischeri; luxCDABE; gene fusions; bioluminescence; oxidative damage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
1 Almashanu, S., A. Tuby, R. Hadar, R. Einy, and J. Kuhn. 1995. Formation of active bacterial luciferase between interspecific subunits in vivo. J. Biolumin. Chemilumin. 10: 157-167   DOI   ScienceOn
2 Meighen, E. A. 1991. Molecular biology of bacterial bioluminescence. Microbial. Rev. 55: 123- 142   PUBMED
3 Park, J. E., K.-H. Lee, and D. Jahng. 2002. Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells. J. Microbiol. Biotechnol. 12: 349- 353   과학기술학회마을
4 Pazzagli, M., J. H. Devine, D. O. Peterson, and T. O. Baldwin. 1992. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells. Anal. Biochem. 204: 315- 323   DOI   ScienceOn
5 Davidov, Y., R. Rozen, D. R. Smulski, T. K. Van Dyk, A. C. Vollmer, D. A. Elsernore, R. A. LaRossa, and S. Belkin. 2000. Improved bacterial SOS promoter::lux fusions for genotoxicity detection. Mutat. Res. 466: 97-107   DOI   ScienceOn
6 Lee, H. J. and M. B. Gu. 2003. Construction of a sodA::luxCDABE fusion Escherichia coli: Comparison with a katG fusion strain through their responses to oxidative stresses. Appl. Microbiol. Biotechnol. 60: 577- 580   DOI   PUBMED
7 Hakkila, K, M. Maksimow, M. Karp, and M. Virta. 2002. Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal. Biochem. 301: 235- 242   DOI   ScienceOn
8 Szittner, R. and E. Meighen. 1990. Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. J. Biol. Chem. 265: 16581-16587
9 Winson, M. K, S. Swift, P. J. Hill, C. M. Sims, G. Griesrnayr, B. W. Bycroft, P Williams, and G. S. Stewart. 1998. Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett. 163: 193- 202   DOI   ScienceOn
10 Xi, L. and S. C. Tu. 1993. Construction and characterization of hybrid luciferases coded by lux genes from Photorhabdus luminescens and Vibrio fischeri. Photochem. Photobiol. 57: 714-719   DOI   ScienceOn
11 Van Dyk, T. K., Y. Wei, M. K. Hanafey, M. Dolan, M. J. Reeve, J. A. Rafalski, L. B. Rothman-Denes, and R. A. LaRossa. 2001. A genomic approach to gene fusion technology. Proc. Natl Acad. Sci. USA 98: 2555- 2560   DOI   PUBMED   ScienceOn
12 Korbashi, P., R. Kohen, J. Katzhendler, and M. Chevion. 1986. Iron mediates paraquat toxicity in Escherichia coli. J. Biol. Chem. 261: 12472- 12476   PUBMED
13 Mitchell, R. J. and M. B. Gu. 2004. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl. Microbiol. Biotechnol. 64: 46- 52   DOI   ScienceOn
14 Rogowsky, P. M., T. J. Close, J. A. Chimera, J. J. Shaw, and C. I. Kado. 1987. Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169: 5101-5112   DOI   PUBMED
15 Rupani, S. P, M. B. Gu, K. B. Konstantinov, P. S. Dhurjati, T. K. Van Dyk, and R. A. LaRossa. 1996. Characterization of the stress response of a bioluminescent biological sensor in batch and continuous cultures. Biotechnol Prog. 12: 387-392   DOI   ScienceOn
16 Delong, E. F., D. Steinhauer, A. Israel, and K. H. Nealson. 1987. Isolation of the lux genes from Photobacterium leiognathi and expression in Escherichia coli. Gene 54: 203- 210   DOI   PUBMED   ScienceOn
17 Manukhov, I. V., G. E. Eroshnikov, M. Y. Vyssokikh, and G. B. Zavilgelsky. 1999. Folding and refolding of thermolabile and thermostable bacterial luciferases: The role of DnaKJ heat-shock proteins. FEBS Lett. 448: 265- 268   DOI   PUBMED   ScienceOn
18 Van Dyk, T. K and R. A. Rosson. 1998. 102: 85- 95. In R. A LaRossa (ed.), Methods in Molecular Biology: Bioluminescence Methods and Protocols. Humana Publishing, Towowa, NJ, U.S.A.
19 Demple, B. 1991. Regulation of bacterial oxidative stress genes. Annu. Rev. Genet. 25: 315- 337   DOI   PUBMED   ScienceOn
20 Storz, G., S. B. Farr, and B. N. Ames. 1990. Bacterial defenses against oxidative stress. Trends Genet. 6: 363- 368   DOI   ScienceOn
21 Stewart, G. S. A. B. and P. Williams. 1992. lux Genes and the applications of bacterial bioluminescence. J. Genet. Microbiol. 138: 1289- 1300   DOI   PUBMED   ScienceOn
22 Baldwin, T. O., J. H. Devine, R. C. Heckel, J. W. Lin, and G. S. Shadel. 1989. The complete nucleotide sequence ofthe lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence. J. Biolumin. Chemilumin. 4: 326- 341   DOI   ScienceOn
23 Frackrnan, S., M. Anhalt, and K. H. Nealson. 1990. Cloning, organization, and expression of the bioluminescence genes of Photorhabdus luminescens. J. Bacteriol. 172: 5767- 5773   DOI
24 Greenberg, J. T., P. Monach, J. H. Chou, P. D. Josephy, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 6181-6185   DOI   ScienceOn
25 Tyulkova, N. A. and T. P. Sandalova. 1996. Comparative study of temperature effects on bacterialluciferase. Biochemistry (Moscow) 61: 205- 214
26 Min, J. and M. B. Gu. 2003. Genotoxicity assay using chromosomally-integrated bacterial recA::Lux. J. Microbiol. Biotechnol. 13: 99- 103   과학기술학회마을
27 Belkin, S., D. R. Srnulski, A. C. Vollmer, T. K. Van Dyk, and R. A. LaRossa. 1996. Oxidative stress detection with Escherichia coli harboring a katG':lux fusion. Appl. Environ. Microbiol. 62: 2252-2256   PUBMED
28 Premkurnar, J. R., R. Rosen, S. Belkin, and O. Lev. 2002. Sol-gel luminescence biosensors: Encapsulation of recombinant E. coli reporters in thick silicate gels. Anal. Chim. Acta 462: 11- 23   DOI   ScienceOn
29 Lee, H. Y, S. H. Choi, and M. B. Gu. 2003. Response of bioluminescent bacteria to sixteen azo dyes. Biotechnol. Bioprocess Eng. 8: 101- 105   DOI   ScienceOn
30 Van Dyk, T. K., E. J. DeRose, and G. E. Gonye. 2001. LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J. Bacteriol. 183: 5496- 5505   DOI   ScienceOn
31 Engebrecht, J. and M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81: 4154- 4158   DOI
32 Cho, J. C. and S. J. Kim. 1999. Green tluorescent proteinbased direct viable count to verify a viable but nonculturable state of Salmonella typhi in environmental samples. J. Microbiol. Methods 36: 227- 235   DOI   ScienceOn
33 Meighen, E. A. and P. V. Dunlap. 1993. Physiological, biochemical and genetic control of bacterial bioluminescence. Adv. Microbial Physiol. 34: 2- 58
34 Justus, T. and S. M. Thomas. 1999. Evaluation of transcriptional fusions with green fluorescent protein versus luciferase as reporters in bacterial mutagenicity tests. Mutagenesis 14: 351- 356   DOI   ScienceOn