• Title/Summary/Keyword: Photorespiration

Search Result 22, Processing Time 0.022 seconds

Photosynthesis and Respiration (P&R) Analyzer Analysis Optimization for Microalgal Activity Evaluation (미세조류 활성도 평가를 위한 Photosynthesis and Respiration (P&R) Analyzer 분석조건 최적화)

  • Huh, Jae-Hee;Sim, Tae-Suk;Hwang, Sun-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.449-457
    • /
    • 2021
  • Photosynthesis and respiration rate of microalgae are important factors during advanced wastewater treatment research using microalgae, There are several equipments and measurement methods for measuring photosynthesis and respiration, with different challenges that occur during pretreatment and stabilization of the analysis process. Therefore, in this study, for accurate Photosynthesis and Respiration (P&R) analyzer measurement, the analysis process was divided into pre-processing, DO stabilization, and analysis stages and each was optimized to enable accurate evaluation. For this purpose, the effect of DO saturation of the sample on P&R analysis, DO stabilization according to the degassing flow rate, and photoinhibition of the OD level on photosynthesis was investigated. Based on our study results, when DO was supersaturated, photosynthetic efficiency decreased due to photorespiration, making it inappropriate as a P&R sample. In addition, 0.5 L-N2/min level was the optimal nitrogen degassing flow rate for DO desaturation. The inhibition of photosynthetic efficiency by self-shading caused by the increase in OD was observed from OD 2.0, and it was found that P& R analysis is preferably performed on samples with OD less than 2.0. In addition, based on the above three optimization results, an optimized P&R Analyzer instruction for accurate P&R analysis was also presented.

Changes of Drought Tolerance and Photosynthetic Characteristics of Populus davidiana Dode According to PEG Concentration (PEG농도에 따른 사시나무의 내건성과 광합성 특성의 변화)

  • Oh Chang-Young;Han Sim-Hee;Kim Yong-Yul;Lee Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.296-302
    • /
    • 2005
  • We investigated changes in photosynthetic characteristics of P. davidiana in order to understand damage patterns to photosynthetic apparatus under drought stress. Root sprout saplings of P. davildiana were treated with $0\%,\;2\%,\;5\%,\;and\;10\%$ of 300ml polyethylene glycol (PEG) once a weer far one month. After one month, we measured photosynthetic parameters and analyzed the photochemical and $CO_2$ fixation systems. Photosynthetic rate, stomatal conductance, and respiration rate in the leaves of P. davildiana decreased according to increasing stress strength. In the photochemical system, quantum yield of PSII was reduced by the increment of PEG concentration, The decrease of apparent quantum yield was related to reduction of electron transport. Respiration rate decreased with an increase in PEG concentration, whereas photorespiration rate in the $CO_2$ fixation system increased. In conclusion, photosynthesis of P. davidiana responded sensitively under drought stress, and the sensitivity depended upon the strength of water stress. P. davidiana exhibited an increase of water use efficiency under water stress.

Visualization of oxygen distribution on leaf surfaces using VisiSens oxygen planar optode system (VisiSens 산소 평면광 센서 시스템을 이용한 식물 잎 표면의 산소분포 가시화)

  • Hwang, BaeGeun;Kim, HyeJeong;Lee, SangJoon
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • Oxygen is a key factor in aerobic reactions and most biological activities. Visualization of oxygen distribution of a chemical process or biological system has been a very challenging object despite of its significance and potential impact. To monitor and visualize the spatial distribution of oxygen concentration, various techniques such as electro-chemical probe, polarographic electrode, LIF(laser-induced fluorescence) and so on have been introduced. Oxygen planar optode which utilizes the oxygen quenching of fluorescence light is one of the currently available methods for time-resolved visualization of oxygen distribution on a planar surface. In this study, we utilized VisiSens oxygen planar optode system to visualize the spatial distribution of oxygen concentration on leaves of Korean azalea. As a result, temporal variation of oxygen concentration distribution caused by respiratory activity of the leaf could be quantitatively monitored.

Photosynthetic Inhibition in Leaves of Ailanthus altissima under O3 Fumigation

  • Lee, Jae-Cheon;Oh, Chang-Young;Han, Sim-Hee;Kim, Pan-Gi
    • Journal of Ecology and Environment
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2006
  • We investigated the enect of $O_3$ on the photosynthetic characteristics of tree of heaven (Ailanthus altissima) that is naturalized plant and used as restoration plant for contaminated area. Two-year-old seedlings were planted to pots and transferred into closed $O_3$ chamber. Photosynthetic pigments contents and photosynthetic characteristics were measured every three weeks under 100 pub $O_3$ fumigation. There was no visible foliar injury by $O_3$ exposure and contents of photosynthetic pigments did not show significant differences between control and $O_3$-treated seedlings. Also there were no significant differences in stomatal conductance, and water use efficiency. But photosynthetic rate and apparent quantum yield (AQY) of $O_3$ treated seedlings were reduced after nine weeks of ozone fumigation. In addition, the reduction of carboxylation efficiency and photorespiration were observed in the leave of $O_3$ treated seedlings after six weeks. In accordance with our result, carbon fixation system of A. altissima was most sensitive to $O_3$ stress to evaluate physiological damage induced by $O_3$.

Effects of Nitrogen Sources on PRE-point and Free amino acids in Soybean Leaves different In Phosphorus Sensitivity (인산감수성(燐酸感受性)이 다른 대두엽(大豆葉)의 광합성(光合成) 호흡(呼吸) 평형(平衡)과 유리(遊離) 아미노산에 대(對)한 질소원(窒素源)의 영향(影響))

  • Stutte, Charls A.;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.239-244
    • /
    • 1973
  • Effects of nitrogen sources on free amino acids, and on photosynthsis-respiration equilibrium point of various positional leaf in soybean were investigated in relation to phosphorus sensitivity. The content of free amino acids was highest in ammonium and lowest in urea treated leaves. Glycine, serine, alanine and especially histidine were high in the ammonium treated leaves. Aspartic acid was high in the nitrate treated leaves. Photosynthesis respiration equilibrium point was higher in the sensitive cultivars, and higher with ammonium than with nitrate. The excess ammonium in plant appears to draw out an intermediate metabolite from carbon fixation pathway resulting in photosynthetic inhibition and activate pentoses phosphate pathway and photorespiration. Such phenomena were likely accentuated in phosphorus sensitive variety.

  • PDF

The mitochondrial proteome analysis in wheat roots

  • Kim, Da-Eun;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Kwon, Soo Jeong;Cho, Kun;Cho, Seong-Woo;Park, Chul-Soo;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.126-126
    • /
    • 2017
  • Mitochondria are important in wheat, as in all crops, as the main source of ATP for cell maintenance and growth including vitamin synthesis, amino acid metabolism and photorespiration. To investigate the mitochondrial proteome of the roots of wheat seedlings, a systematic and targeted analysis were carried out on the mitochondrial proteome from 15 day-old wheat seedling root material. Mitochondria were isolated by Percoll gradient centrifugation; and extracted proteins were separated and analyzed by Tricine SDS-PAGE along with LTQ-FTICR mass spectrometry. From the isolated the sample, 184 proteins were identified which is composed of 140 proteins as mitochondria and 44 proteins as other subcellular proteins that are predicted by the freeware subcellular predictor. The identified proteins in mitochondria were functionally classified into 12 classes using the ProtFun 2.2 server based on biological processes. Proteins were shown to be involved in amino acid biosynthesis (17.1%), biosynthesis of cofactors (6.4%), cell envelope (11.4%), central intermediary metabolism (10%), energy metabolism (20%), fatty acid metabolism (0.7%), purines and pyrimidines (5.7%), regulatory functions (0.7%), replication and transcription (1.4%), translation (22.1%), transport and binding (1.4%), and unknown (2.8%). These results indicate that many of the protein components present and functions of identifying proteins are common to other profiles of mitochondrial proteins performed to date. This dataset provides the first extensive picture, to our knowledge, of mitochondrial proteins from wheat roots. Future research is required on quantitative analysis of the wheat mitochondrial proteomes at the spatial and developmental level.

  • PDF

Effects Of Active Okygen Species (^1O_2, O_2^-, H_2O_2$) and Scavengers on the Chlorophyll Bleaching of Leaf-Burning Disease from Panax ginseng C.A. Meyer (인삼엽요병에서 Active Oxygen Species (^1O_2, O_2^-, H_2O_2$)가 Chlorophyll Bleaching에 미치는 영향 및 방제대책에 관한 연구)

  • Yang, Deok-Cho;Kim, Myoung-Won;Chae, Quae;Kim, Myeong-Sik
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.98-104
    • /
    • 1989
  • In order to determine the specific active oxygen species directly related to chlorophyll bleaching in the leaf-burning disease, we investigated the effects of singlet oxygen (1O2), superoxide radical (O2-), and hydrogen Peroxide (H2O2) on isolated chloroplast suspension and leaf discs from Panax ginseng C.A. Meyer. When the singlet oxygen was added to the chloroplast suspension, the chlorophyll and carotenoid contents were decreased by more than 809), similar to treatment with high light intensity (100 KLux). We assumed that the conversion of dioxygen (O2) produced either in photolysis or in breakdown of hydrogen peroxide to singlet oxygen resulted from photorespiration. On the basis of these experiments , :he inhibitory effects of active oxygen scavengers propylgallic acid (PGA), 2,5-ditetrabutyl hydroquinon (DBH), sodium pyrosulfate (SPS), and ascorbic acid (ABS) were examined. In chloroplast suspension all four scavengers inhibited chlorophyll bleaching by more than 75fl , and in the leaf discs the inhibition rates of SPS, PGA and ABS were 46%, 51%, and 96% respectively.

  • PDF

Isolation and Characterization of Glycolate Oxidase Gene from Panax ginseng C. A. Meyer

  • Parvin, Shohana;Pulla, Rama Krishna;Kim, Yu-Jin;Sathiyaraj, Gayathri;Jung, Seok-Kyu;Khorolragchaa, Altanzul;In, Jun-Gyo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The oxidation of glycolate to glyoxylate, a key step in plant photorespiration, is carried out by the peroxisomal flavoprotein glycolate oxidase (EC 1.1.3.15). To investigate the altered gene expression and the role of GOX in ginseng plant defense system, a cDNA clone containing a GOX gene designated as PgGOX was isolated and sequenced from Panax ginseng. The cDNA was 692 nucleotides long and have an open reading frame of 552 bp with a deduced amino acid sequence of 183 residues. A GenBank BlastX search revealed that the deduced amino acid of PgGOX shares a high degree homology with the Glycine max (95% identity). In the present study we analyzed the expression of PgGOX under various environmental stresses at different times using real time-PCR. The results showed that the expressions of PgGOX increased after various treatments involving salt, light, cold, ABA, SA, and copper treatment.

PHYSIOLOGICAL RESPONSE OF PANAX GINSENG TO LIGHT

  • Park Hoon
    • Proceedings of the Ginseng society Conference
    • /
    • 1980.09a
    • /
    • pp.151-170
    • /
    • 1980
  • Physiological response of Panax ginseng var. atropurpureacaulo (purple stem variety, Pg) to light was reviewed through old literatures and recent experiments. Canopy structure, growth, pigment, leaf anatomy, disease occurence, transpiration, photosynthesis (PS), leaf saponin, photoperiodism and nutrient uptake were concerned. P. ginseng var. xanthocarpus (yellow berry variety, Px) and Panax quinquefolius(Pq) were compared with Pg if possible. Compensation point(Cp) increased with increase of light and ranged from 110 to 150 at $20^{\circ}C$ but from 140 to 220 at $30^{\circ}C$ with 4 to 15 Klux indicating occurence of light and temperature-dependent high photorespiration. Characteristics of Korea ginseng to hate high temperature was well accordance with an observation 2000 years ago. Korea ginseng showed lower Cp and appeared to be more tolerant to high light intensity and temperature than American sheng although the latter showed greater PS, stomata frequency and conductance, chlorophyll and carotenoids. Px showed lower PS than Pg probably due to higher Cp. Total leaf saponin was higher in leaves grown under high light. Ratio or diol saponin and triol saponin(PT/PD) decreased with increase of light intensity during growing mainly due to decrease of ginsenoside $Rg_1$ but increase of ginsenoside Rd. Leaves of Pg and Px had $Rg_1$ but no $Rb_3$ which was only found as much as $20\%$ of total in Pq leaves, and decreased with increase of light intensity. Re increased in Pg and Px but decreased in Pq with increase of light. PT/PD in leaf ranged 1.0-1.5 in Pg and Px but around 0.5 in Pq. Korea ginseng has Yang characteristics(tolerant to high light and temperature), cultured under Eum(shade) condition and long been used for Yang efficacy (to build up energy) while Pq was quite contrary. Traditional low light $intensity(3-8\%)$ for Korea ginseng culture appeared to be strongly related to historical unique quality. Effect of light quality and photoperiodism was not well known. Experiences are long but scientific knowledge is short for production and quality assessment of ginseng. Recent scientific knowledge of ginseng should learn wisdom from old experiences.

  • PDF

Effect of Temperature, Light Intensity and $CO_2$ Concentration on Photosynthesis and Respiration of Wasabia japonica Matsum (온도(溫度), 광도(光度) 및 $CO_2$의 농도(濃度)가 고추냉이의 광합성(光合成)과 호흡(呼吸)에 미치는 영향(影響))

  • Choi, Sun-Young;Lee, Kang-Soo;Eun, Jong-Seon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.3
    • /
    • pp.181-186
    • /
    • 1995
  • This study was carried out to know the effect of temperature, light intensity and $CO_2$ con­centration on photosynthesis and respiration in Wasabi (Wasabia japonica Matsum). The optimum temperature for photosynthesis in Wasabi was $17{\sim}20^{\circ}C$ and dark respiration rate was increased with the increasing of tem­perature from, $15 ^{\circ}C\;to\;30^{\circ}C$. Light compensation point was $6.0\;{\mu}E\;m^{-2}s^{-1}$ in Wasabi and $36.7\;{\mu}E\;m^{-2}s^{-1}$ in Corn, and light saturation point was $600{\mu}E\;m^{-2}s^{-1}$, similar in Wasabi and Corn. $CO_2$, compensation point was 67.3ppm in Wasabi and 11.6 ppm in Corn. Photorespiration rate in Wasabi leaf at $l000{\mu}E\;m^{-2}s^{-1}$ light intensity was 3.3 mg$CO_2$, $dm^{-2}hr^{-1}$, and then was gradually decreased as light intensity decreased. Stomatal frequency was about $76\;mm^{-2}$ on the adaxial surface and $623\;mm^{-2}$ on the abaxial surface, and the size of stomata was about 1$12{\mu}m$ on the adaxial surface and $17{\mu}m$ on the abaxial surface of the leaf.

  • PDF