• Title/Summary/Keyword: Photoquenching

Search Result 3, Processing Time 0.015 seconds

Evidence of Material-dependent and Temperature- dependent Quenching Rates by Infrared Imaging in S.I. GaAs (반절연 갈륨비소의 적외선 영상에 의한 웨이퍼성장조건 및 온도종속 퀀칭율 증명)

  • 강성준
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.469-473
    • /
    • 2003
  • The effect of photoquenching on infrared image of the EL2 center in semi-insulating(S.I.) GaAs has been studied using near infrared transmission techniques. Particular interest is devoted to as-grown and annealed samples of undoped S.I. GaAs. It is found that the quenching mechanism is different in each sample and also the quenching rate is dependent on the materials and the quenching temperature which is somewhat inconsistent with other existing publications.

Quantitative Analysis on Near Band Edge Images in GaAs Wafer (GaAs 웨이퍼의 대역단 영상에 대한 정량적 해석)

  • Kang, Seong-jun;Na, Cheolhun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.861-868
    • /
    • 2017
  • Near band infrared imaging technique has adopted for imaging EL2 and shallow level distributions in undoped semi-insulating LEC GaAs. This technique, which relies on the mapping of near bandgap infrared transmission, is both rapid and non-destructive. Until now no quantitative analysis has been reported for near band edge region which gives the reverse contrast on EL2 absorption images. This paper presents the spectral, spatial and temperature dependence of photoquenching forward and inverse mechanism in the band edge domain for cells and walls and for direct and inverted contrast conditions during transitory regimes. The difference in the threshold for the EL2w and EL2b defects could be attributed to the contribution of a different electrical assistance due to a different species of impurities. Quantitative analysis results show an increased density of EL2w and a small reduction of EL2b in the region of the walls where there is a high density of dislocations.

Infrared Imaging and a New Interpretation on the Reverse Contrast Images in GaAs Wafer (GaAs 웨이퍼의 적외선 영상기법 및 콘트라스트 반전 영상에 대한 새로운 해석)

  • Kang, Seong-jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2085-2092
    • /
    • 2016
  • One of the most important properties of the IC substrate is that it should be uniform over large areas. Among the various physical approaches of wafer defect characterization, special attention is to be payed to the infrared techniques of inspection. In particular, a high spatial resolution, near infrared absorption method has been adopted to directly observe defects in semi-insulating GaAs. This technique, which relies on the mapping of infrared transmission, is both rapid and non-destructive. This method demonstrates in a direct way that the infrared images of GaAs crystals arise from defect absorption process. A new interpretation is presented for the observed reversal of contrast in the infrared absorption of nonuniformly distributed deep centers, related to EL2, in semi-insulating GaAs. The low temperature photoquenching experiment has demonstrated in a direct way that the contrast inverse images of GaAs wafers arise from both absorption and scattering mechanisms rather than charge re-distribution or local variation of bandgap.