The blood pressure measurement is calculated as a value corresponding to the pressure of the blood vessel using the pressure from the outside for a long time. Due to the recent miniaturization of measurement equipment and the ICT combination of personal healthcare systems, a system that enables continuous and real-time measurement of blood pressure with a sensor is required. In this study, blood pressure was measured using pulse transit time using Photoplethysmography. In this study, blood pressure was estimated by using systolic blood pressure. And it is possible to make measurement only with PPG itself, which can contribute to making a micro blood pressure measuring device. As a result, systolic blood pressure and PPG's S1-P and P-S2 were used to analyze the possibility of blood pressure estimation.
Kim, Sunho;Lee, Jungsub;Kang, Hyunil;Ohn, Baeksan;Baek, Gyehyun;Jung, Minkyu;Im, Sungbin
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.8
/
pp.18-26
/
2015
Measuring the heart rate during exercise is important to properly control the amount of exercise. With the recent advent of smart device usage, there is a dramatic increase in interest in devices for the real-time measurement of the heart rate during exercise. During intensive exercise, accurate heart rate estimation from wrist-type photoplethysmography (PPG) signals is a very difficult problem due to motion artifact (MA). In this study, we propose an efficient algorithm for an accurate estimation of the heart rate from wrist-type PPG signals. For the twelve data sets, the proposed algorithm achieves the average absolute error of 1.38 beat per minute (BPM) and the Pearson correlation between the estimates and the ground-truth of heart rate was 0.9922. The proposed algorithm presents the strengths in an accurate estimation together with a fast computation speed, which is attractive in application to wearable devices.
Ji, Yerim;Lim, Seoyeon;Park, Soyeon;Kim, Sangha;Dong, Suh-Yeon
Journal of Korea Multimedia Society
/
v.24
no.11
/
pp.1481-1491
/
2021
Since most biosignals rely on contact-based measurement, there is still a problem in that it is hard to provide convenience to users by applying them to daily life. In this paper, we present a mobile application for estimating heart rate based on a deep learning model. The proposed application measures heart rate by capturing real-time face images in a non-contact manner. We trained a three-dimensional convolutional neural network to predict photoplethysmography (PPG) from face images. The face images used for training were taken in various movements and situations. To evaluate the performance of the proposed system, we used a pulse oximeter to measure a ground truth PPG. As a result, the deviation of the calculated root means square error between the heart rate from remote PPG measured by the proposed system and the heart rate from the ground truth was about 1.14, showing no significant difference. Our findings suggest that heart rate measurement by mobile applications is accurate enough to help manage health during daily life.
Kim Jin-Tae;Kim Sung-Woo;Hong Hyun-Ki;Im Jae-Joong;Kim Deok-Won
Journal of the Institute of Electronics Engineers of Korea SC
/
v.43
no.3
s.309
/
pp.60-66
/
2006
The purpose of this study was to suggest a new detection method for early diagnosing diabetic neuropathic foot by obtaining a ratio of toe to finger blood flow using photoplethysmography(PPG) and Laser Doppler(LD). Nerve conduction velocity (NCV) has been routinely used for diagnosing neuropathic foot, but it applies strong electric stimulus to peripheries resulting in stress and pain. The blood flow ratio of 50 neuropathic diabetes($0.96{\pm}0.20$) was significantly higher than that of 64 normal person($0.46{\pm}0.15$)(p<0.000). It also showed that toe temperature of neuropathic diabetes($30.5{\pm}1.4^{\circ}C$) was significantly higher than that of normal group($29.3{\pm}2.0^{\circ}C$)(p<0.000). The optimal boundary value of the blood flow ratio was found to be 0.678 and the sensitivity and specificity of this proposed method resulted in 95.3% and 95.3% respectively. Lastly, there were no neuropathic diabetes whose temperature difference between finger and toe was higher than $4.5\;^{\circ}C$.
The most important personal health care in digital health care is a very important issue mainly for chronic diseases. Therefore, it is important to develop a simple wearable device for real-time health management. Existing blood pressure estimation wearable devices use PPG characteristics to analyze PTT and propose blood pressure estimation algorithms. However, the influencing factors of the algorithm such as the reproducibility of PPG, whether to apply various PTTs, and variables generated from the physical differences of the measurers are actually very complex. Therefore, in this study, the correlation between PTT, SBP, and DBP was analyzed, and it was designed to use PPG sensors for device miniaturization. The blood pressure estimation algorithm took into account differences in PPG, heart rate, and personal variables.
This paper is a study to develop a deep neural network (DNN) blood glucose prediction model based on heart rate (HR) and heart rate variability (HRV) data measured by PPG-based sensors. MLP deep learning consists of an input layer, a hidden layer, and an output layer with 11 independent variables. The learning results of the blood glucose prediction model are MAE=0.3781, MSE=0.8518, and RMSE=0.9229, and the coefficient of determination (R2) is 0.9994. The study was able to verify the feasibility of glycemic control using non-blood vital signs using PPG-based digital devices. In conclusion, a standardized method of acquiring and interpreting PPG-based vital signs, a large data set for deep learning, and a study to demonstrate the accuracy of the method may provide convenience and an alternative method for blood glucose management in dogs.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.7
/
pp.962-968
/
2018
In this study, we developed novel indicators to assess postoperative pain based on PPG derivative waveform. As the candidate indicator of postoperative pain assessment, the time from the start of beating to the n-th peak($T_n$) and the n-th peak amplitude($A_n$) of the PPG derivative were selected. In order to verify derived indicators, each candidate indicator was derived from the PPG of 78 subjects before and after surgery, and it was confirmed whether significant changes were observed after surgery. Logistic classification was performed with each proposed indicator to calculate the pain classification accuracy, then the classification performance was compared with SPI(Surgical Pleth Index, GE Healthcare, Chicago, US). The results showed that there were significant differences(p < 0.01) in all indicators except for $T_3$ and $A_3$. The coefficient of variation(CV) of every time-related indicators were lower than the CV of SPI(30.43%), however, the CV in amplitude-related parameters were higher than that of SPI. Among the candidate indicators, amplitude of the first peak, $A_1$, showed that highest accuracy in post-operative pain classification, 68.72%, and it is 15.53% higher than SPI.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.6
/
pp.794-798
/
2018
There is a growing need for a care system that can continuously monitor, manage and effectively relieve stress for modern people. In recent years, mobile healthcare devices capable of measuring heart rate have become popular, and many stress monitoring techniques using heart rate variability analysis have been actively proposed and commercialized. In addition, respiratory biofeedback methods are used to provide stress relieving services in environments using mobile healthcare devices. In this case, breathing information should be measured well to assess whether the user is doing well in biofeedback training. In this study, we extracted the heart beat interval signal from the PPG and used the oscillator based notch filter based on the IIR band pass filter to track the strongest frequency in the heart beat interval signal. The respiration signal was then estimated by filtering the heart beat interval signal with this frequency as the center frequency. Experimental results showed that the number of breathing could be measured accurately when the subject was guided to take a deep breath. Also, in the timeing measurement of inspiration and expiration, a time delay of about 1 second occurred. It is expected that this will provide a respiratory biofeedback service that can assess whether or not breathing exercise are performed well.
Background: Type 2 diabetic mellitus (T2DM) is an emerging global pandemic which is associated with lots of co-morbidities and reported vascular dysfunctions. T2DM associated vascular dysfunctions leads to vasculopathy in the form of altered peripheral vascular dynamics. Cold stress test (CST) is a reliable sympathetic reactivity test used for assessing vascular dysfunctions. In this study we are trying to quantify vascular dysfunctions in T2DM patients non invasively by various parameters of photoplethysmography (PPG) of cold stress test. Methods: Case control study had done in referral health center AIIMS, Raipur. Parameters are recorded by finger-PPG before, during and after CST (1 min) in 2 groups, control (n = 20 healthy volunteers) and case (n = 20 diagnosed T2DM patients). Results: Due to cold stress, PPG parameter peak amplitude was significantly decreased in both healthy and T2DM groups (p <0.001 and p <0.001, respectively). However, recovery trend of amplitude was significantly slow in T2DM compared to healthy subjects. Another PPG parameter peak to peak interval was significantly higher in healthy group compared to T2DM patients. Conclusions: This study showed that T2DM patients has significant deranged pulse volume parameters like amplitude and peak to peak interval can be used to objectively quantify the vasculopathy in T2DM patients by using sympathetic reactivity to cold stress.
This study is to develop automatic extraction system of continuous blood pressure using ECG (Electrocardiogram) and PPG(Photoplethysmography) for u-health care technology. PTT (Pulse Transit Time) was determined from peak difference between ECG and PPG and its inverse made to get blood pressure. Since the peaks were vulnerable to be contaminated from noise and variation of amplitude, this study developed the adaptive algorithm for peak calculation in any noise condition. The developed method of the adaptive peak calculation was proven to make the standard deviations of PPT decrease to 28% and the detection of noise increase to 18%. Also, the correlation model such as blood pressure = -0.044 $\cdot$ PTT + 133.592 has successfully been determined for predicting the continuous pressure measured without using cuff but with using PPG and ECG, only.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.