Browse > Article
http://dx.doi.org/10.15207/JKCS.2019.10.2.067

Analysis of Blood pressure influence factor Correction for Photoplethysmography Fusion Algorithm Calibration  

Kim, Seon-Chil (Division of Biomedical Engineering, Keimyung University)
Publication Information
Journal of the Korea Convergence Society / v.10, no.2, 2019 , pp. 67-73 More about this Journal
Abstract
The blood pressure measurement is calculated as a value corresponding to the pressure of the blood vessel using the pressure from the outside for a long time. Due to the recent miniaturization of measurement equipment and the ICT combination of personal healthcare systems, a system that enables continuous and real-time measurement of blood pressure with a sensor is required. In this study, blood pressure was measured using pulse transit time using Photoplethysmography. In this study, blood pressure was estimated by using systolic blood pressure. And it is possible to make measurement only with PPG itself, which can contribute to making a micro blood pressure measuring device. As a result, systolic blood pressure and PPG's S1-P and P-S2 were used to analyze the possibility of blood pressure estimation.
Keywords
Convergence Algorithm; Electrocardiogram; Photoplethysmography; Bood Pressure; Pulse Transit Time;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 K. Meigas, R. Attai & J. Lass. (2001). Continuous blood pressure monitoring using pulse wave delay, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 25-28. DOI : 10.1109/IEMBS.2001.1019495
2 J. H. Kim, M. C. Whang & K. C. Nam. (2008). Development of continuous blood pressure measurement system using ECG and PPG, Korean Journal of the Science of Emotion & Sensibility, 11(2), 235-244.
3 E. O'Brien. J. Petrie. W. Littler. M. D. Swiet. P. L. Padfield. D, G. Altman, M. Bland, A. Coats & N. Atkins. (1993). The british hypertension society protocol for the evaluation of blood pressure measuring devices. Journal of Hypertension, 11(2), 543-562.   DOI
4 M. Kachuee. M. M. Kiani. H. Mohammadzade. M. Shabany. (2015). Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time, 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 24-27. DOI : 10.1109/ISCAS.2015.7168806
5 Y. G. Gil. (2013). Development of model for blood pressure estimation using Multiple Bio-Signal and a real-time monitoring system based on IPv6. Doctoral dissertation. Busan University, Busan.
6 M. Nitzan. B. Khanokh & Y. Slovik. (2001). The difference in pulse transit time to the toe and finger measured by photoplethysmography. Physiological Measurement, 23(1), 85-93 DOI : 10.1088/0967-3334/23/1/308   DOI
7 S. M. Lee, E. K. Park, I. Y. Kim. & S. I. Kim. (2005). An estimating method for systolic blood pressure by using pulse transit time and physical characteristic parameters, The Institute of electronics Engineers of korea, 42(3), 41-46.
8 P. A. Shaltis. A. Reisner. & H. H. Asada. (2006). Wearable, cuff-less PPG-based blood pressure monitor with novel height sensor. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 908-911. DOI : 10.1109/IEMBS.2006.260027
9 S. Lim. H. K. Lee. K. S. Park. & S. I. Cho. (2005). Changes in the characteristics of metabolic syndrome in Korea over the period 1998-2001 as determined by korea national health and nutrition Examination Surveys. Diabetes Care, 28(7), 1810-1812. DOI : 10.2337/diacare.28.7.1810   DOI
10 A. Onta, K. Ceyhan K, O. Basar, B. Erer, S. Tobrak, V. Sansoy. (2002). Metabolic syndrome: major impact on coronary risk in a population with low cholesterol levels: a prospective and cross-sectional evaluation. Athrosclerosis, 165(2), 285-292. DOI : 10.1016/S0021-9150(02)00236-8   DOI
11 K. W. Chan. & Y. T. Zhang. (2001). Noninvasive and cuffless measurements of blood pressure for telemedicine. 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3592-3593. DOI : 10.1109/IEMBS.2001.1019611
12 S. G. Beak & D. J. Kim (2018). Relationship between Muscular Extension Exercise and Metabolic Syndrome Indices in Hypertensive Patients Journal of the Korea Convergence Society, 9(9), 363-369. DOI : 10.15207/JKCS.2018.9.9.363   DOI
13 W. H. Choi, Y. M. Seo, M. Y. Jeon & S. Y. Choi (2018). Convergence Study on the Comparison of Risk Factors for Dyslipidemia by Age and Gender: Based on the Korea National Health and Nutrition Examination Survey(2013-2015year), Journal of the Korea Convergence Society, 9(10), 571-587. DOI :10.15207/JKCS.2018.9.10.571   DOI
14 W. Chen. T. Kobayashi. S. Ichikawa. Y. Takeuchi. & T. Togawa. (2000). Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Medical & Biological Engineering & Computing, 38(5), 569-574. DOI : 10.1007/BF02345755   DOI
15 E. J. Jung, J. C. Kim, H. I. Jung, H. Yoo & K. Y. Chung. (2017). Mining based Mental Health and Blood Pressure Management Service for Smart Health, Journal of the Korea Convergence Society, 8(3), 13-18. DOI :10.15207/JKCS.2017.8.1.013   DOI
16 J. M. Bruner. (1984). Automated indirect blood pressure measurement a point of view. Medical Instrumentation, 18(2), 143-145.
17 J. V. Egmond. M. Senbos & J. F. Crul. (1985). Invasive v. non-invasive measurement of arterial pressure : comparison of two automatic methods and simultaneously measured direct intra-arterial pressure, British Journal of Anaesthesia, 57(4), 434-444. DOI : 10.1093/bja/57.4.434   DOI
18 H. H. Asada. P. Shaltis. A. Reisner. S. Rhee & R. Hutchinson. (2003). Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Engineering in Medicine and Biology Magazine, 22(3), 28-40. DOI : 10.1109/MEMB.2003.1213624