References
- David Bruyette. (2022.10). Diabetes Mellitus in Dogs and Cats (Online). https://www.msdvetmanual.com/endocrine-system/the-pancreas/diabetes-mellitus-in-dogs-and-cats
- J. Freitas et al. (2021). Causes of spontaneous death and euthanasia in dogs: A background study in Bahia, Brazil. Veterinarni Medicina, 66. 156-166. DOI : 10.17221/92/2020-VETMED.
- ADRIENNE FARRICELL. (2023.1.24). The Most Common Causes of Death in Dogs (By Breed and Size) (Online). https://pethelpful.com/dogs/Study-Reveals-The-Most-Common-Causes-of-Death-in-Dogs
- B. Shi, F. Chen, J. Chen & Y. Tsau. (2015). Zhongguo yi liao qi xie za zhi, Chinese journal of medical instrumentation, 39(2), 95-97.
- J. Ma, C. Wang & Z. Li & H. Zhao (2011). Study of measuring heart rate and respiration rate based on PPG. Guangxue Jishu/Optical Technique, 37, 309-312.
- A. B. Liu, P. C. Hsu, Z. L. , Chen & H. T. Wu, (2011). Measuring pulse wave velocity using ECG and photoplethysmography. Journal of medical systems, 35(5), 771-777. DOI : 10.1007/s10916-010-9469-0
- B. C. Wilson & S. L. Jacques, (1990). Optical reflectance and transmittance of tissues: principles and applications. IEEE Journal of Quantum Electronics, 26, 2186-2199. https://doi.org/10.1109/3.64355
- F. A. Duck, (2013) Physical properties of tissues: a comprehensive reference book. Academic press.
- J. P. Varshney. (2020). Electrocardiography in Veterinary Medicine. Springer Nature Singapore Pte Ltd. 22(8), 4215. DOI : 10.3390/ijms22084215
- J. Haggstrom, R, L. Hamlin, K. Hansson & C. Kvart (1996). Heart rate variability in relation to severity of mitral regurgitation in Cavalier King Charles spaniels. The Journal of small animal practice, 37(2), 69-75. DOI : 10.1111/j.1748-5827.1996.tb01941.x
- S. Doxey & A. Boswood. (2004). Differences between breeds of dog in a measure of heart rate variability. The Veterinary record, 154(23), 713-717. DOI : 10.1136/vr.154.23.713
- A. Struven, C. Holzapfel, C. Stremmel & S. Brunner. (2021). Obesity, Nutrition and Heart Rate Variability. International journal of molecular sciences, 22(8), 4215. DOI : 10.3390/ijms22084215
- N. Azulay et al. (2022). Reduced heart rate variability is related to the number of metabolic syndrome components and manifest diabetes in the sixth Tromso study 2007-2008. Scientific reports, 12(1), 11998. DOI : 10.1038/s41598-022-15824-0
- S. L. Jacques. (2013). Optical properties of biological tissues: a review. Physics in medicine and biology, 58(11), R37-R61. DOI : 10.1088/0031-9155/58/11/R37
- N. Sieber-Ruckstuhl, M. Casella & C. E. Reusch. (2003). Home monitoring of blood glucose concentrations by owners of diabetic dogs and cats. 145. 537-543.
- S. Corradini et al. (2016). Accuracy of a Flash Glucose Monitoring System in Diabetic Dogs. Journal of Veterinary Internal Medicine. 30. DOI : 10.1111/jvim.14355.
- P. Rossetti, J. Bondia, J. Vehi & C. G. Fanelli. (2010). Estimating plasma glucose from interstitial glucose: the issue of calibration algorithms in commercial continuous glucose monitoring devices. Sensors (Basel, Switzerland), 10(12), 10936-10952. DOI : 10.3390/s101210936
- C. Cobelli, M. Schiavon, C. Dalla Man, A. Basu & R. Basu. (2016). Interstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study. Diabetes technology & therapeutics, 18(8), 505-511. DOI : 10.1089/dia.2016.0112
- A. Basu et al (2015). Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes. Journal of diabetes science and technology, 9(1), 63-68. DOI : 10.1177/1932296814554797
- K. Rebrin & G. M. Steil. (2000). Can interstitial glucose assessment replace blood glucose measurements?, Diabetes technology & therapeutics, 2(3), 461-472. DOI : 10.1089/15209150050194332
- S. N. Thennadil, ,J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, & M. B. Block. (2001). Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels. Diabetes technology & therapeutics, 3(3), 357-365. DOI : 10.1089/15209150152607132
- T. P. Monsod et al, (2002). Do sensor glucose levels accurately predict plasma glucose concentrations during hypoglycemia and hyperinsulinemia?. Diabetes care, 25(5), 889-893. DOI : 10.2337/diacare.25.5.889
- C.-G. Park & S.-K. Choi. (2022). The study of blood glucose level prediction using photoplethysmography and machine learning . Journal of Digital Policy, 1(2), 61-69. https://doi.org/10.23149/JDP.2022.1.2.061