• Title/Summary/Keyword: Photonic device

Search Result 87, Processing Time 0.023 seconds

Polymeric Waveguide Bio Sensors with Bragg Gratings (브래그 격자 광도파로형 바이오 센서)

  • Lee, Jae-Hyun;Kim, Gyeong-Jo;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • Biophotonic sensors based on polymer waveguide with Bragg reflection grating are demonstrated in this work. Waveguide Bragg reflectors were designed by using the effective index method and the transmission matrix method. The grating pattern was formed by exposing the laser interference pattern on a photoresist. On top of the inverted rib waveguide, the Bragg reflection grating was inscribed by the O2 plasma etching. In order to perform the bio-molecule detection experiment, a calixarene molecule was self-assembled on top of thin Au film deposited on the waveguide Bragg reflector. To measure the response of the sensor, several PBS solutions with different concentrations of potassium ion from 1 pM to $100\;{\mu}M$ were dropped on the sensor surface. The shift of Bragg reflection wavelength was observed from the fabricated sensor device, which was proportional to the concentration of potassium ion ranging from 1 pM to 108 pM.

Synthesis Technology of Functional Colloid Particles and Its Applications (기능성 콜로이드 입자의 제조기술 및 이의 응용)

  • Kang, Sung-Min;Choi, Chang-Hyung;Kim, Jongmin;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.331-340
    • /
    • 2012
  • Synthetic methods of colloids have been significantly developed in industry due to their significant demand for preparation of functional particles. Recently, dynamic/static microfluidic system has emerged as a promising route to the synthesis of the particles, providing precise control of physical and chemical properties such as size, shape, porosity, surface roughness, and surface functionality. These formed particles can be potentially used in various applications including medical diagnostics, photonic device, and biological industry. In addition, these particles provide a novel route to create new materials via their directed self-assembly, and it enable to study and predict the natural phenomenon by mimicking of the nature. Therefore, we describe recent progress for functional colloid particles and its applications.

Cell Disruption of Dunaliella salina using Batch Low Frequency Non-Focused Ultrasound (비집속 회분저주파를 이용한 Dunaliella salina 세포 파쇄)

  • Choi, Jun-Hyuk;Kim, Gwang-Ho;Park, Jong-Rak;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.63-71
    • /
    • 2021
  • Using fossil fuels in existing industrial systems causes a variety of social problems. Recently, many studies have been conducted on bio-refineries, which aim to actively utilize biomass to reduce the use of fossil fuels and solve various social problems. Among them, research using microalgae as a third-generation biomass has attracted considerable attention. Microalgae use inorganic matter to produce organic matter, and cell destruction is necessary to extract useful organic materials from microalgae. The extracted organic materials are currently used in various industrial fields. Numerous cell-destruction methods exist. We have investigated cell disruption by sonication, especially its efficiency. Ultrasound is a sound wave with frequencies above 20 kHz, and destroys cells by sending high energy through a cavitation that occurs, according to the characteristics of the sound wave. The Dunaliella salina microalgae used in this study was cultured in a flat-type photobioreactor. Experiments were performed using a batch low-frequency processing device. Logistic model was applied to analyze the results of cell-destruction experiments using ultrasound. The proper conditions for the most efficient cell destruction were OD 1.4(microalgae concentration)), 54watt(output power) and 200mL(microalgae capacity).

Dependence of Doping on Indium Content in InGaN/GaN Multiple Quantum Wells for Effective Water Splitting (다양한 In 조성을 가진 InGaN/GaN Multi Quantum Well의 효과적인 광전기화학적 물분해)

  • Bae, Hyojung;Bang, Seung Wan;Ju, Jin-Woo;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.1-5
    • /
    • 2018
  • In this study, the effects of indium (In) doping in InGaN/GaN multi quantum well (MQW) on photoelectrochemical (PEC) properties were investigated. Each quantum well (QW) layer with controlled In content were grown on sapphire substrate. Before growth of MQW, GaN growth consisted of various stages in the following order: buffer GaN growth, undoped GaN growth, and Si-doped n-type GaN growth. Absorbance of InGaN/GaN MQW having different In composition was higher than that of the InGaN/GaN MQW having a constant In composition. It indicates that InGaN layer having different In composition absorbs light having a broad spectrum energy. These results are in agreement with those in photoluminescence (PL). After evaluation of PEC properties, it demonstrated that InGaN/GaN MQW having different In composition was improved InGaN/GaN MQW having constant In composition in PEC water splitting ability.

Improvement of Thermal Stability of Optical Current Sensors Based on Polymeric Optical Integrated Circuits for Quadrature Phase Interferometry (사분파장 위상 간섭계 폴리머 광집적회로 기반 광전류센서의 온도 안정성 향상 연구)

  • Chun, Kwon-Wook;Kim, Sung-Moon;Park, Tae-Hyun;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.249-254
    • /
    • 2019
  • An optical current sensor device that measures electric current by the principle of the Faraday effect was designed and fabricated. The polarization-rotated reflection interferometer and the quadrature phase interferometer were introduced so as to improve the operational stability. Complex structures containing diverse optical components were integrated in a polymeric optical integrated circuit and manufactured in a small size. This structure allows sensing operation without extra bias feedback control, and reduces the phase change due to environmental temperature changes and vibration. However, the Verdet constant, which determines the Faraday effect, still exhibits an inherent temperature dependence. In this work, we tried to eliminate the residual temperature dependence of the optical current sensor based on polarization-rotated reflection interferometry. By varying the length of the fiber-optic wave plate, which is one of the optical components of the interferometer, we could compensate for the temperature dependence of the Verdet constant. The proposed optical current sensor exhibited measurement errors maintained within 0.2% over a temperature range, from 25℃ to 85℃.

Two-Wavelength Lasers Based on Oversized Rib Polymer Waveguide Bragg Reflectors (대형 립 폴리머 광도파로 브래그 격자를 이용한 두 파장 레이저)

  • Sung, Chi-Hun;Kim, Jun-Whee;Shin, Jin-Soo;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2014
  • An external cavity laser supporting two wavelengths is demonstrated by incorporating polymer waveguide Bragg reflectors and a superluminescent light-emitting diode. An oversized rib waveguide structure and Bragg gratings are designed by using the effective-index and transmission-matrix methods. Bragg gratings with different periods are inscribed on a polymer waveguide through double-exposure laser interferometry. In order to tune the cavity loss affected by the reflectivity of Bragg gratings, a Bragg reflectors with varying length is incorporated. Two-wavelength-mode lasing is achieved for the device consisting of 2-mm long, 537-nm period gratings and 2.2-mm long, 540-nm period gratings; the lasing wavelengths are 1554 nm and 1564 nm, with an output power close to 0 dBm, a 20-dB bandwidth of 0.2 nm, and a side-mode suppression ratio of 45 dB.

Compact Design and Fabrication of 'Improved QS-MMI' Demultiplexer (Improved QS-MMI' 1.31/1.55μm 파장분리기의 최적화 설계 및 제작)

  • Kim, Nam-Kook;Kim, Jang-Kyum;Choi, Chul-Hyun;O, Beom-Hoan;Lee, Seung-Gol;Park, Se-Gun;Lee, El-Hang
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.248-253
    • /
    • 2005
  • We designed and fabricated a compact multi-mode interference (MMI) wavelength demultiplexer using the concept of 'Improved Quasi-State' modes. The output power and extinction ratio were improved by utilizing modal phase error which is specially occurred in low-index contrast. For a designed demultiplexer, the mode propagation analysis with effective index approximation shows significant improvement of extinction ratio to -25 dB for both $1.31{\mu}m\;and\;1.51{\mu}m$ wavelength region and the split-length was reduced about 1/5 of other MMI devices. The fabricated device shows successful characteristics for both 1.31 and $1.55{\mu}m$ wavelengths. These results demonstrate the potential of low-index materials system and the embossing process for photonic integrated circuits.