DOI QR코드

DOI QR Code

Synthesis Technology of Functional Colloid Particles and Its Applications

기능성 콜로이드 입자의 제조기술 및 이의 응용

  • Kang, Sung-Min (Department of Chemical Engineering, Chungnam National University) ;
  • Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Jongmin (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • Received : 2012.11.15
  • Accepted : 2012.12.03
  • Published : 2012.12.31

Abstract

Synthetic methods of colloids have been significantly developed in industry due to their significant demand for preparation of functional particles. Recently, dynamic/static microfluidic system has emerged as a promising route to the synthesis of the particles, providing precise control of physical and chemical properties such as size, shape, porosity, surface roughness, and surface functionality. These formed particles can be potentially used in various applications including medical diagnostics, photonic device, and biological industry. In addition, these particles provide a novel route to create new materials via their directed self-assembly, and it enable to study and predict the natural phenomenon by mimicking of the nature. Therefore, we describe recent progress for functional colloid particles and its applications.

최근 콜로이드 산업에서 기능성 입자의 수요가 증가함에 따라 입자의 제조방법은 상당한 발전을 이루었다. 이러한 발전은 동적/정적 미세유체 시스템을 도입함으로써 이루어졌으며 입자의 크기, 형태, 다공성, 표면의 거칠기 또는 기능성 등 물리적, 화학적인 형상제어를 가능하게 해주었다. 이러한 형상제어를 통하여 만들어진 기능성 입자는 의료진단, 광소자, 바이오산업으로 응용될 수 있다. 뿐만 아니라, 기능성 콜로이드 입자의 자가조립을 유도함으로써 규칙적인 정렬부터 불규칙적인 새로운 형태의 기능성을 갖는 물질을 얻을 수 있고, 자연계에서 일어나는 현상을 모사함으로써 본질적인 연구도 가능하게 해주었다. 그리하여 본 총설에서는 최근 각광받고 있는 기능성 콜로이드 입자의 제조방법에 대해 설명하고 이의 응용 가능성을 소개하였다.

Keywords

References

  1. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R., "Hydrogels in Biology and Medicine: from Molecular Principles to Bionanotechnology," Adv. Mater., 18, 1345-1360 (2006). https://doi.org/10.1002/adma.200501612
  2. Niu, Z. W., He, J. B., Russell, T. P., and Wang, Q. A., "Synthesis of Nano/Microstructures at Fluid Interfaces," Angew. Chem. Int. Edit., 49, 10052-10066 (2010). https://doi.org/10.1002/anie.201001623
  3. Wang, Y. P., Byrne, J. D., Napier, M. E., and DeSimone, J. M., "Engineering Nanomedicines Using Stimuli-responsive Biomaterials," Adv. Drug. Deliver. Rev., 64, 1021-1030 (2012). https://doi.org/10.1016/j.addr.2012.01.003
  4. Sacanna, S., and Pine, D. J., "Shape-anisotropic Colloids: Building Blocks for Complex Assemblies," Curr. Opin. Colloid. In., 16, 96-105 (2011). https://doi.org/10.1016/j.cocis.2011.01.003
  5. Derveaux, S., Stubbe, B. G., Braeckmans, K., Roelant, C., Sato, K., Demeester, J., and De Smedt, S. C., "Synergism between Particle-based Multiplexing and Microfluidics Technologies May Bring Diagnostics Closer to the Patient," Anal. Bioanal. Chem., 391, 2453-2467 (2008). https://doi.org/10.1007/s00216-008-2062-4
  6. Xia, Y. N., Gates, B., and Li, Z. Y., "Self-assembly Approaches to Three-dimensional Photonic Crystals," Adv. Mater., 13, 409-413 (2001). https://doi.org/10.1002/1521-4095(200103)13:6<409::AID-ADMA409>3.0.CO;2-C
  7. Dendukuri, D., and Doyle, P. S., "The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics," Adv. Mater., 21, 4071-4086 (2009). https://doi.org/10.1002/adma.200803386
  8. Mason, T. G., and Bibette, J., "Shear Rupturing of Droplets in Complex Fluids," Langmuir, 13, 4600-4613 (1997). https://doi.org/10.1021/la9700580
  9. Asua, J. M., "Emulsion Polymerization: from Fundamental Mechanisms to Process Developments," J. Polym. Sci. Pol. Chem., 42, 1025-1041 (2004). https://doi.org/10.1002/pola.11096
  10. Xu, S. Q., Nie, Z. H., Seo, M., Lewis, P., Kumacheva, E., Stone, H. A., Garstecki, P., Weibel, D. B., Gitlin, I., and Whitesides, G. M., "Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition," Angew. Chem. Int. Edit., 44, 724-728 (2005). https://doi.org/10.1002/anie.200462226
  11. Hwang, S., Choi, C. H., and Lee, C. S., "Regioselective Surface Modification of Pdms Microfluidic Device for the Generation of Monodisperse Double Emulsions," Macromol. Res., 20, 422-428 (2012). https://doi.org/10.1007/s13233-012-0048-8
  12. Choi, C. H., Yi, H., Hwang, S., Weitz, D. A., and Lee, C. S., "Microfluidic Fabrication of Complex-shaped Microfibers by Liquid Template-aided Multiphase Microflow," Lab Chip, 11, 1477-1483 (2011). https://doi.org/10.1039/c0lc00711k
  13. Jung, J. H., Choi, C. H., Hwang, T. S., and Lee, C. S., "Efficient In situ Production of Monodisperse Polyurethane Microbeads in Microfluidic Device using Increase of Residence Time of Droplets," Biochip. J., 3, 44-49 (2009).
  14. Choi, C. H., Jung, J. H., Hwang, T. S., and Lee, C. S., "In Situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17, 163-167 (2009). https://doi.org/10.1007/BF03218673
  15. Choi, C. H., Jung, J. H., Kim, D. W., Chung, Y. M., and Lee, C. S., "Novel One-pot Route to Monodisperse Thermosensitive Hollow Microcapsules in a Microfluidic System," Lab Chip, 8, 1544-1551 (2008). https://doi.org/10.1039/b804839h
  16. Kim, S. H., Abbaspourrad, A., and Weitz, D. A., "Amphiphilic Crescent-moon-shaped Microparticles Formed by Selective Adsorption of Colloids," J. Am. Chem. Soc., 133, 5516-5524 (2011). https://doi.org/10.1021/ja200139w
  17. Prasad, N., Perumal, J., Choi, C. H., Lee, C. S., and Kim, D. P., "Generation of Monodisperse Inorganic-organic Janus Microspheres in a Microfluidic Device," Adv. Funct. Mater., 19, 1656-1662 (2009). https://doi.org/10.1002/adfm.200801181
  18. Dendukuri, D., Pregibon, D. C., Collins, J. T., Hatton, A., and Doyle, P. S., "Continuous-flow Lithography for High-throughput Microparticle Synthesis," Nat. Mater., 5, 365-369 (2006). https://doi.org/10.1038/nmat1617
  19. Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A., and Doyle, P. S., "Stop-flow Lithography in a Microfluidic Device," Lab Chip, 7, 818-828 (2007). https://doi.org/10.1039/b703457a
  20. Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M., and DeSimone, J. M., "Direct Fabrication and Harvesting of Monodisperse, Shape-specific Nanobiomaterials," J. Am. Chem. Soc., 127, 10096-10100 (2005). https://doi.org/10.1021/ja051977c
  21. Choi, C. H., Lee, J., Yoon, K., Tripathi, A., Stone, H. A., Weitz, D. A., and Lee, C. S., "Surface-tension-induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem. Int. Edit., 49, 7748-7752 (2010). https://doi.org/10.1002/anie.201002764
  22. Jung, J. M., Son, J. W., Choi, C. H., and Lee, C. S., "Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof," Clean Technol., 18, 295-300 (2012). https://doi.org/10.7464/ksct.2012.18.3.295
  23. Choi, C. H., Jeong, J. M., Kang, S. M., Lee, C. S., and Lee, J., "Synthesis of Monodispersed Microspheres from Laplace Pressure Induced Droplets in Micromolds," Adv. Mater., 24, 5078-5082 (2012). https://doi.org/10.1002/adma.201200843
  24. Kim, S. H., Sim, J. Y., Lim, J. M., and Yang, S. M., "Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-controlled Locomotion," Angew. Chem. Int. Edit., 49, 3786-3790 (2010). https://doi.org/10.1002/anie.201001031
  25. Sacanna, S., Rossi, L., Pine, D. J., "Magnetic Click Colloidal Assembly," J. Am. Chem. Soc., 134, 6112-6115 (2012). https://doi.org/10.1021/ja301344n
  26. Yin, S. N., Wang, C. F., Yu, Z. Y., Wang, J., Liu, S. S., and Chen, S., "Versatile Bifunctional Magnetic-fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display," Adv. Mater., 23, 2915-2919 (2011). https://doi.org/10.1002/adma.201100203
  27. Groschel, A. H., Schacher, F. H., Schmalz, H., Borisov, O. V., Zhulina, E. B., Walther, A., and Muller, A. H. E., "Precise Hierarchical Self-assembly of Multicompartment Micelles," Nat. Commun., 3, 1-10 (2012).
  28. Chen, Q., Whitmer, J. K., Jiang, S., Bae, S. C., Luijten, E., and Granick, S., "Supracolloidal Reaction Kinetics of Janus Spheres," Science, 331, 199-202 (2011). https://doi.org/10.1126/science.1197451
  29. Sacanna, S., Irvine, W. T. M., Chaikin, P. M., Pine, D. J., "Lock and Key Colloids," Nature, 464, 575-578 (2010). https://doi.org/10.1038/nature08906
  30. Groschel, A. H., Walther, A., Lobling, T. I., Schmelz, J., Hanisch, A., Schmalz, H., and Muller, A. H. E., "Facile, Solutionbased Synthesis of Soft, Nanoscale Janus Particles with Tunable Janus Balance," J. Am. Chem. Soc., 134, 13850-13860 (2012). https://doi.org/10.1021/ja305903u
  31. Hwang, D. K., Oakey, J., Toner, M., Arthur, J. A., Anseth, K. S., Lee, S., Zeiger, A., Van Vliet, K. J., and Doyle, P. S., "Stop-Flow Lithography for the Production of Shape-evolving Degradable Microgel Particles," J. Am. Chem. Soc., 131, 4499-4504 (2009). https://doi.org/10.1021/ja809256d
  32. Lewis, C. L., Choi, C. H., Lin, Y., Lee, C. S., and Yi, H., "Fabrication of Uniform DNA-conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays," Anal. Chem., 82, 5851-5858 (2010). https://doi.org/10.1021/ac101032r
  33. Appleyard, D. C., Chapin, S. C., and Doyle, P. S., "Multiplexed Protein Quantification with Barcoded Hydrogel Microparticles," Anal. Chem., 83, 193-199 (2011). https://doi.org/10.1021/ac1022343
  34. Liang, F. X., Shen, K., Qu, X. Z., Zhang, C. L., Wang, Q. A., Li, J. L., Liu, J. G., and Yang, Z. Z., "Inorganic Janus Nanosheets," Angew. Chem. Int. Edit., 50, 2379-2382 (2011). https://doi.org/10.1002/anie.201007519
  35. Tanaka, T., Okayama, M., Minami, H., and Okubo, M., "Dual Stimuli-Responsive 'Mushroom-like' Janus Polymer Particles as Particulate Surfactants," Langmuir, 26, 11732-11736 (2010). https://doi.org/10.1021/la101237c
  36. Kim, S. H., Lee, S. Y., and Yang, S. M., "Janus Microspheres for a Highly Flexible and Impregnable Water-repelling Interface," Angew. Chem. Int. Edit., 49, 2535-2538 (2010). https://doi.org/10.1002/anie.201000108
  37. Nie, Z. H., Li, W., Seo, M., Xu, S. Q., and Kumacheva, E., "Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-assembly," J. Am. Chem. Soc., 128, 9408-9412 (2006). https://doi.org/10.1021/ja060882n
  38. Wang, J. Y., Wang, Y. P., Sheiko, S. S., Betts, D. E., and De- Simone, J. M., "Tuning Multiphase Amphiphilic Rods to Direct Self-assembly," J. Am. Chem. Soc., 134, 5801-5806 (2012). https://doi.org/10.1021/ja2066187

Cited by

  1. Synthesis of Crosslinked Polymeric Particles and Their Application for the Superhydrophobic Surfaces Using Structured Polymeric Colloids vol.36, pp.11, 2015, https://doi.org/10.1080/01932691.2014.981336
  2. Graphene Attached on Microsphere Surface for Thermally Conductive Composite Material vol.19, pp.3, 2013, https://doi.org/10.7464/ksct.2013.19.3.243
  3. Lysozyme Crystallization in Droplet-based Microfluidic Device vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.760
  4. A rhodamine scaffold immobilized onto mesoporous silica as a fluorescent probe for the detection of Fe (III) and applications in bio-imaging and microfluidic chips vol.224, 2016, https://doi.org/10.1016/j.snb.2015.10.058
  5. Synthesis of Shape Reconfigurable Janus Particles by External pH Stimuli vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.226