Browse > Article
http://dx.doi.org/10.7464/ksct.2012.18.4.331

Synthesis Technology of Functional Colloid Particles and Its Applications  

Kang, Sung-Min (Department of Chemical Engineering, Chungnam National University)
Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University)
Kim, Jongmin (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Clean Technology / v.18, no.4, 2012 , pp. 331-340 More about this Journal
Abstract
Synthetic methods of colloids have been significantly developed in industry due to their significant demand for preparation of functional particles. Recently, dynamic/static microfluidic system has emerged as a promising route to the synthesis of the particles, providing precise control of physical and chemical properties such as size, shape, porosity, surface roughness, and surface functionality. These formed particles can be potentially used in various applications including medical diagnostics, photonic device, and biological industry. In addition, these particles provide a novel route to create new materials via their directed self-assembly, and it enable to study and predict the natural phenomenon by mimicking of the nature. Therefore, we describe recent progress for functional colloid particles and its applications.
Keywords
Colloids; Functional particles; Microfluidic system;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R., "Hydrogels in Biology and Medicine: from Molecular Principles to Bionanotechnology," Adv. Mater., 18, 1345-1360 (2006).   DOI   ScienceOn
2 Niu, Z. W., He, J. B., Russell, T. P., and Wang, Q. A., "Synthesis of Nano/Microstructures at Fluid Interfaces," Angew. Chem. Int. Edit., 49, 10052-10066 (2010).   DOI   ScienceOn
3 Wang, Y. P., Byrne, J. D., Napier, M. E., and DeSimone, J. M., "Engineering Nanomedicines Using Stimuli-responsive Biomaterials," Adv. Drug. Deliver. Rev., 64, 1021-1030 (2012).   DOI   ScienceOn
4 Sacanna, S., and Pine, D. J., "Shape-anisotropic Colloids: Building Blocks for Complex Assemblies," Curr. Opin. Colloid. In., 16, 96-105 (2011).   DOI   ScienceOn
5 Derveaux, S., Stubbe, B. G., Braeckmans, K., Roelant, C., Sato, K., Demeester, J., and De Smedt, S. C., "Synergism between Particle-based Multiplexing and Microfluidics Technologies May Bring Diagnostics Closer to the Patient," Anal. Bioanal. Chem., 391, 2453-2467 (2008).   DOI   ScienceOn
6 Xia, Y. N., Gates, B., and Li, Z. Y., "Self-assembly Approaches to Three-dimensional Photonic Crystals," Adv. Mater., 13, 409-413 (2001).   DOI
7 Dendukuri, D., and Doyle, P. S., "The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics," Adv. Mater., 21, 4071-4086 (2009).   DOI   ScienceOn
8 Mason, T. G., and Bibette, J., "Shear Rupturing of Droplets in Complex Fluids," Langmuir, 13, 4600-4613 (1997).   DOI   ScienceOn
9 Asua, J. M., "Emulsion Polymerization: from Fundamental Mechanisms to Process Developments," J. Polym. Sci. Pol. Chem., 42, 1025-1041 (2004).   DOI   ScienceOn
10 Xu, S. Q., Nie, Z. H., Seo, M., Lewis, P., Kumacheva, E., Stone, H. A., Garstecki, P., Weibel, D. B., Gitlin, I., and Whitesides, G. M., "Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition," Angew. Chem. Int. Edit., 44, 724-728 (2005).   DOI   ScienceOn
11 Hwang, S., Choi, C. H., and Lee, C. S., "Regioselective Surface Modification of Pdms Microfluidic Device for the Generation of Monodisperse Double Emulsions," Macromol. Res., 20, 422-428 (2012).   DOI   ScienceOn
12 Choi, C. H., Yi, H., Hwang, S., Weitz, D. A., and Lee, C. S., "Microfluidic Fabrication of Complex-shaped Microfibers by Liquid Template-aided Multiphase Microflow," Lab Chip, 11, 1477-1483 (2011).   DOI   ScienceOn
13 Jung, J. H., Choi, C. H., Hwang, T. S., and Lee, C. S., "Efficient In situ Production of Monodisperse Polyurethane Microbeads in Microfluidic Device using Increase of Residence Time of Droplets," Biochip. J., 3, 44-49 (2009).
14 Choi, C. H., Jung, J. H., Hwang, T. S., and Lee, C. S., "In Situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17, 163-167 (2009).   DOI   ScienceOn
15 Choi, C. H., Jung, J. H., Kim, D. W., Chung, Y. M., and Lee, C. S., "Novel One-pot Route to Monodisperse Thermosensitive Hollow Microcapsules in a Microfluidic System," Lab Chip, 8, 1544-1551 (2008).   DOI   ScienceOn
16 Kim, S. H., Abbaspourrad, A., and Weitz, D. A., "Amphiphilic Crescent-moon-shaped Microparticles Formed by Selective Adsorption of Colloids," J. Am. Chem. Soc., 133, 5516-5524 (2011).   DOI   ScienceOn
17 Prasad, N., Perumal, J., Choi, C. H., Lee, C. S., and Kim, D. P., "Generation of Monodisperse Inorganic-organic Janus Microspheres in a Microfluidic Device," Adv. Funct. Mater., 19, 1656-1662 (2009).   DOI   ScienceOn
18 Dendukuri, D., Pregibon, D. C., Collins, J. T., Hatton, A., and Doyle, P. S., "Continuous-flow Lithography for High-throughput Microparticle Synthesis," Nat. Mater., 5, 365-369 (2006).   DOI   ScienceOn
19 Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A., and Doyle, P. S., "Stop-flow Lithography in a Microfluidic Device," Lab Chip, 7, 818-828 (2007).   DOI   ScienceOn
20 Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M., and DeSimone, J. M., "Direct Fabrication and Harvesting of Monodisperse, Shape-specific Nanobiomaterials," J. Am. Chem. Soc., 127, 10096-10100 (2005).   DOI   ScienceOn
21 Choi, C. H., Lee, J., Yoon, K., Tripathi, A., Stone, H. A., Weitz, D. A., and Lee, C. S., "Surface-tension-induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem. Int. Edit., 49, 7748-7752 (2010).   DOI   ScienceOn
22 Jung, J. M., Son, J. W., Choi, C. H., and Lee, C. S., "Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof," Clean Technol., 18, 295-300 (2012).   DOI   ScienceOn
23 Choi, C. H., Jeong, J. M., Kang, S. M., Lee, C. S., and Lee, J., "Synthesis of Monodispersed Microspheres from Laplace Pressure Induced Droplets in Micromolds," Adv. Mater., 24, 5078-5082 (2012).   DOI   ScienceOn
24 Kim, S. H., Sim, J. Y., Lim, J. M., and Yang, S. M., "Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-controlled Locomotion," Angew. Chem. Int. Edit., 49, 3786-3790 (2010).   DOI   ScienceOn
25 Sacanna, S., Rossi, L., Pine, D. J., "Magnetic Click Colloidal Assembly," J. Am. Chem. Soc., 134, 6112-6115 (2012).   DOI   ScienceOn
26 Yin, S. N., Wang, C. F., Yu, Z. Y., Wang, J., Liu, S. S., and Chen, S., "Versatile Bifunctional Magnetic-fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display," Adv. Mater., 23, 2915-2919 (2011).   DOI   ScienceOn
27 Groschel, A. H., Schacher, F. H., Schmalz, H., Borisov, O. V., Zhulina, E. B., Walther, A., and Muller, A. H. E., "Precise Hierarchical Self-assembly of Multicompartment Micelles," Nat. Commun., 3, 1-10 (2012).
28 Chen, Q., Whitmer, J. K., Jiang, S., Bae, S. C., Luijten, E., and Granick, S., "Supracolloidal Reaction Kinetics of Janus Spheres," Science, 331, 199-202 (2011).   DOI   ScienceOn
29 Groschel, A. H., Walther, A., Lobling, T. I., Schmelz, J., Hanisch, A., Schmalz, H., and Muller, A. H. E., "Facile, Solutionbased Synthesis of Soft, Nanoscale Janus Particles with Tunable Janus Balance," J. Am. Chem. Soc., 134, 13850-13860 (2012).   DOI   ScienceOn
30 Sacanna, S., Irvine, W. T. M., Chaikin, P. M., Pine, D. J., "Lock and Key Colloids," Nature, 464, 575-578 (2010).   DOI   ScienceOn
31 Hwang, D. K., Oakey, J., Toner, M., Arthur, J. A., Anseth, K. S., Lee, S., Zeiger, A., Van Vliet, K. J., and Doyle, P. S., "Stop-Flow Lithography for the Production of Shape-evolving Degradable Microgel Particles," J. Am. Chem. Soc., 131, 4499-4504 (2009).   DOI   ScienceOn
32 Lewis, C. L., Choi, C. H., Lin, Y., Lee, C. S., and Yi, H., "Fabrication of Uniform DNA-conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays," Anal. Chem., 82, 5851-5858 (2010).   DOI   ScienceOn
33 Appleyard, D. C., Chapin, S. C., and Doyle, P. S., "Multiplexed Protein Quantification with Barcoded Hydrogel Microparticles," Anal. Chem., 83, 193-199 (2011).   DOI   ScienceOn
34 Liang, F. X., Shen, K., Qu, X. Z., Zhang, C. L., Wang, Q. A., Li, J. L., Liu, J. G., and Yang, Z. Z., "Inorganic Janus Nanosheets," Angew. Chem. Int. Edit., 50, 2379-2382 (2011).   DOI   ScienceOn
35 Tanaka, T., Okayama, M., Minami, H., and Okubo, M., "Dual Stimuli-Responsive 'Mushroom-like' Janus Polymer Particles as Particulate Surfactants," Langmuir, 26, 11732-11736 (2010).   DOI   ScienceOn
36 Kim, S. H., Lee, S. Y., and Yang, S. M., "Janus Microspheres for a Highly Flexible and Impregnable Water-repelling Interface," Angew. Chem. Int. Edit., 49, 2535-2538 (2010).   DOI   ScienceOn
37 Nie, Z. H., Li, W., Seo, M., Xu, S. Q., and Kumacheva, E., "Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-assembly," J. Am. Chem. Soc., 128, 9408-9412 (2006).   DOI   ScienceOn
38 Wang, J. Y., Wang, Y. P., Sheiko, S. S., Betts, D. E., and De- Simone, J. M., "Tuning Multiphase Amphiphilic Rods to Direct Self-assembly," J. Am. Chem. Soc., 134, 5801-5806 (2012).   DOI   ScienceOn