• Title/Summary/Keyword: Photonic bandgap

Search Result 79, Processing Time 0.036 seconds

Two-Dimensional Photonic Crystal Lasers (2차원 광자결정 레이저)

  • Lee, Y. H.;J. K. Hwang;H. Y. Ryu
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.96-98
    • /
    • 2000
  • Room-temperature continuous operation of two-dimensional photonic crystal lasers is achieved at 1.6 ${\mu}{\textrm}{m}$ by using InGaAsP slab-waveguide triangular photonic crystal on top of wet-oxidized aluminum oxide. The main difficulty in the realization of photonic bandgap (OBG) structures has been the nontrivial difficulties in nanofabrication, especially for 3-dimensional PBG structures. Recently, 2-D PBG structures have attracted a great deal of attention due to their simplicity in fabrication and theoretical study as compared to the three-dimensional counterparts [1]. Recently, air-gulfed 2-D slab PBG lasers were reported by Caltech group [2]. However, this air-slab structure is mechanically fragile and thermally unforgiving. Therefore, a new structure that can remove this thermal limitation is dearly sought after for 2-D PBG laser to have practical meaning. In this talk, we report room-temperature continuous operation of 2-D photonic bandgap lasers that are thermally and mechanically stable.

  • PDF

Fiber Interferometers Based on Low Loss Fusion Splicing of Photonic Crystal Fibers (저손실 융착접속을 이용한 광자결정 광섬유 간섭계)

  • Ahn, Jin-Soo;Kim, Gil-Hwan;Lee, Kwan-Il;Lee, Kyung-Shik;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.200-205
    • /
    • 2010
  • We report temperature and strain sensing characteristics of two kinds of in-line fiber interferometers. One interferometer consists of a section of Hollow Optical Fiber(HOF) spliced between two Photonic Bandgap Fibers(PBGF) and the other is built by splicing a section of HOF between two Large Mode Area-Photonic Crystal Fibers(LMA-PCF). To minimize the splice losses, we carefully optimized the heating time and arc current of the splicer so as not to collapse the air holes of the fiber. It is found that the first interferometer has a temperature sensitivity of 15.4 pm/$^{\circ}C$ and a strain sensitivity of 0.24 pm/${\mu}\varepsilon$. The other interferometer exhibits a temperature sensitivity of 17.4 pm/$^{\circ}C$ and a strain sensitivity of 0.2 pm/${\mu}\varepsilon$.

A Novel Wideband and Compact Photonic Bandgap Structure using Double-Plane Superposition (양면 중첩기법을 이용하는 새로운 광대역의 소형 포토닉 밴드갭 구조)

  • 김진양;방현국
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.413-422
    • /
    • 2002
  • A novel photonic bandgap(PBG) structure is proposed and measured for wide bandgap and compact circuit applications. The proposed structure realizes the ultra-wideband bandgap(2-octave) characteristics by superposing two different PBG structures into a coupled double-plane configuration. A low pass filter fabricated using 3-period of the PBG cells shows 2-octave 10 ㏈ stopband from 4.3 to 16.2 ㎓ and 0.2 ㏈ insertion loss in the passband. Moreover, we confirmed that 44∼70 % size reduction can be achieved using the proposed PBG structures. We expect this novel double-plane PBG structure is widely used for compact and wideband circuit applications, such as compact high-efficiency power amplifiers using harmonic tuning techniques.

  • PDF

Two-Dimensional Photonic Bandgap Nanolasers (2차원 광밴드갭 나노레이저)

  • Lee, Y. H.;Hwang, J-K;H.Y. Ryu;Park, H. K.;D. J. Shin
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.2-3
    • /
    • 2001
  • Characteristics of two-dimensional slab photonic crystal lasers will be summarized. Room temperature c.w operation is demonstrated at 1.6 $\mu\textrm{m}$ by using InGaAsP slab-waveguide triangular photonic crystal on top of wet-oxidized aluminum oxide. Recently, 2-D PBG structures have attracted a great deal of attention due to their simplicity in fabrication and theoretical study as compared to the three-dimensional counterparts [1]. Air-guided 2-D slab PBG lasers were reported by Caltech group (2). However, this air-slab structure is mechanically fragile and thermally unforgiving. Therefore, a new structure that can remove this thermal limitation is dearly sought after for 2-D PBG laser to have practical meaning. In this talk, we report room-temperature continuous operation of 2-D photonic bandgap lasers that are thermally and mechanically stable.(omitted)

  • PDF

Improvement of Broadband Feedforward Amplifier Using Photonic Bandgap (PBG를 이용한 광대역 전방급전 전력증폭기의 성능개선에 관한 연구)

  • 윤진호;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.406-409
    • /
    • 2001
  • 본 논문에서는 IMT-2000 대역에서 전방급전 전력증폭기의 선형성을 개선하여 효율과 대역폭을 극대화 하기 위해 Photonic Bandgap(PBG), 전치왜곡, 2차고조파 튜닝 방식으 f동시에 주 증폭기에 적용하였다. 2차 하모닉 성분이 2차고조파 튜닝 방식에 의해 우수하게 제거되고, 3차 하모닉 성분이 전치왜곡 방식에 의해 제거되며 출력단위 PBG느 s고아대역 특성으로 4차 하모닉 이상까지 제거하는 우수한 특성을 보여주었다. 총체적으로 기존의 전방급전 전력증폭기보다 IMD가 최고 15dBc, 효율은 4%, 대역폭은 2배이상 확대됨으로 전력효율과 대역폭을 극대화시킬 수 있었다.

  • PDF

Optical Acetylene Gas Detection using a Photonic Bandgap Fiber and Fiber Bragg Grating (광섬유 격자와 포토닉 밴드갭 광섬유를 이용한 아세틸렌가스 검출)

  • Lee, Yun-Kyu;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.23-29
    • /
    • 2010
  • We propose an optical gas sensor, which consists of a hollow core photonic bandgap fiber (HC-PBGF) and fiber Bragg grating (FBG), for the detection of acetylene gas. The gas detection scheme is uniquely characterized by modulating the Bragg wavelength of the fiber Bragg grating around a selected absorption line of gas filled in the photonic bandgap fiber. In the measurement, a 2m-long HC-PBGF and FBG with a Bragg wavelength of 1539.02nm were used. The FBG was modulated at 2Hz. We demonstrated that the optical fiber gas sensor was able to selectively measure the 2.5% and 5% of acetylene gases.

Design of a Compact and Wide Bandstop Filter using a Multilayered Photonic Bandgap Structure (다층 포토닉 밴드갭 구조를 이용한 소형의 광대역 저지 여파기 설계)

  • Seo, Jae-Ok;Park, Seong-Dae;Kim, Jin-Yang;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.34-39
    • /
    • 2002
  • In this paper, we proposed novel photonic bandgap(PBG) structure using EGP(Elevated Ground Plane) and via in ceramic substrate of microstrip line. From analysis result, the proposed PBG structure is reduced 52.5% at size and increased 45 % at bandwidth compared to typical planar PBG structure. It is also reduced 32 % at size and improved more than 8 dB at power loss compared to typical multilayer DGS(Defected Ground Structure). The proposed PBG structure also can be used bandstop and lowpass filter and it will be useful for small microwave integrated circuit and module development.

A Highly Efficiency CLass-F Power Amplifier Using The Spiral PBG(Photonic Bandgap) Structure (나선형 구조의 PBG(Photonic Bandgap)를 적용한 고효율 Class-F 전력 증폭기)

  • Kim, Sun-Young;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.9
    • /
    • pp.49-54
    • /
    • 2008
  • In this paper, the power added efficiency(PAE) of class F power amplifier is improved by applying a new Photonic Bandgap (PBG) structure on the output of amplifier. The proposed spiral PBG structure is a two-dimensional (2-D) periodic lattice patterned on a dielectric slab that does not require nonplanar fabrication process. This structure bas higher suppression performance at second harmonic. Also, It has a sharp skirt property. This new PBG structure can be applied with class F power amplifier for efficiency improvement. We obtained the PAE of 73.62 % for CDMA applications, and the PAE performance is improved as much as 6.2 % compared with that of a conventional class F power amplifier.

Improvement of Ka band Power Amplifier Employing Photonic Band Gap Structure (PBG 구조를 이용한 Ka Band 전력증폭기 성능개선에 관한 연구)

  • Seo Chulhun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.65-68
    • /
    • 2004
  • The performances of millimeter wave Power amplifier have been improved by using PBG (photonic bandgap structure) in this paper. The PBG structure has been optimized to obtain the lowpass characteristics in Ka band and employed at output port of Ka band power amplifier. The harmonics of the power amplifier have been suppressed by the PBG of output port and the proposed PBG has suppressed the second harmonic to 40dBc around 50 GHz. The improvements of IMD and PAE of the amplifier employing the PBG structure are obtained $15\%$ and $25\%$, compared with those of the conventional Ka band power amplifier, respectively.