Browse > Article
http://dx.doi.org/10.3807/KJOP.2010.21.5.200

Fiber Interferometers Based on Low Loss Fusion Splicing of Photonic Crystal Fibers  

Ahn, Jin-Soo (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST))
Kim, Gil-Hwan (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST))
Lee, Kwan-Il (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST))
Lee, Kyung-Shik (School of Information & Communication Engineering, Sungkyunkwan University)
Lee, Sang-Bae (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST))
Publication Information
Korean Journal of Optics and Photonics / v.21, no.5, 2010 , pp. 200-205 More about this Journal
Abstract
We report temperature and strain sensing characteristics of two kinds of in-line fiber interferometers. One interferometer consists of a section of Hollow Optical Fiber(HOF) spliced between two Photonic Bandgap Fibers(PBGF) and the other is built by splicing a section of HOF between two Large Mode Area-Photonic Crystal Fibers(LMA-PCF). To minimize the splice losses, we carefully optimized the heating time and arc current of the splicer so as not to collapse the air holes of the fiber. It is found that the first interferometer has a temperature sensitivity of 15.4 pm/$^{\circ}C$ and a strain sensitivity of 0.24 pm/${\mu}\varepsilon$. The other interferometer exhibits a temperature sensitivity of 17.4 pm/$^{\circ}C$ and a strain sensitivity of 0.2 pm/${\mu}\varepsilon$.
Keywords
Photonic bandgap fiber; Photonic crystal fiber; Interferometer; Splicing loss;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. Xiao, M. S. Demokan, W. Jin, and Y. Wang, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” IEEE J. Lightwave Technol. 25, 3563-3574 (2007).   DOI
2 J. S. Ahn, K. N. Park, G. H. Kim, S. B. Lee, and K. S. Lee, “Low loss fusion splicing of photonic crystal fiber and single-mode fiber,” Journal of the Institute of Electronics of Engineers of Korea-SD 46, 529-535 (2009).
3 K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” IEEE J. Lightwave Technol. 23, 524-532 (2005).   DOI
4 Z. Tian, S. S-H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105-1107 (2008).   DOI
5 J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29, 346-348 (2004).   DOI
6 G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, Y.-G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17, 2481-2486 (2009).   DOI
7 S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazao, P. Caldas, J. L. Santos, F. M. Araujo, H. Latifi, F. Farahio, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17, 18669-18675 (2009).   DOI
8 A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Optical Fiber Technology 6, 83-90 (2000).   DOI
9 S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode-coupling device applicartions,” IEEE J. Lightwave Technol. 27, 4919-4926 (2009).   DOI
10 T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).   DOI
11 J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851 (2003).   DOI
12 P. St. J. Russell, “Photonic-crystal fibers,” IEEE J. Lightwave Technol. 24, 4729-4749 (2006).   DOI
13 C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).   DOI
14 P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005).   DOI
15 T. Y. Cho, G. H. Kim, K. Lee, and S. B. Lee, “Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties,” J. Opt. Soc. Korea 12, 19-24 (2008).   DOI