DOI QR코드

DOI QR Code

Fiber Interferometers Based on Low Loss Fusion Splicing of Photonic Crystal Fibers

저손실 융착접속을 이용한 광자결정 광섬유 간섭계

  • Ahn, Jin-Soo (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Gil-Hwan (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Kwan-Il (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Kyung-Shik (School of Information & Communication Engineering, Sungkyunkwan University) ;
  • Lee, Sang-Bae (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST))
  • 안진수 (한국과학기술연구원 포토닉스.센서시스템센터) ;
  • 김길환 (한국과학기술연구원 포토닉스.센서시스템센터) ;
  • 이관일 (한국과학기술연구원 포토닉스.센서시스템센터) ;
  • 이경식 (성균관대학교 정보통신공학부) ;
  • 이상배 (한국과학기술연구원 포토닉스.센서시스템센터)
  • Received : 2010.07.28
  • Accepted : 2010.10.15
  • Published : 2010.10.25

Abstract

We report temperature and strain sensing characteristics of two kinds of in-line fiber interferometers. One interferometer consists of a section of Hollow Optical Fiber(HOF) spliced between two Photonic Bandgap Fibers(PBGF) and the other is built by splicing a section of HOF between two Large Mode Area-Photonic Crystal Fibers(LMA-PCF). To minimize the splice losses, we carefully optimized the heating time and arc current of the splicer so as not to collapse the air holes of the fiber. It is found that the first interferometer has a temperature sensitivity of 15.4 pm/$^{\circ}C$ and a strain sensitivity of 0.24 pm/${\mu}\varepsilon$. The other interferometer exhibits a temperature sensitivity of 17.4 pm/$^{\circ}C$ and a strain sensitivity of 0.2 pm/${\mu}\varepsilon$.

본 논문에서는 포토닉 밴드갭 광섬유(Photonic Bandgap Fiber: PBGF) 사이에 중공광섬유(Hollow Optical Fiber: HOF)를 융착 접속시켜 만든 광섬유 간섭계와 넓은 모드 면적을 가지는 광자결정 광섬유(Large Mode Area-Photonic Crystal Fiber: LMA-PCF)사이에 HOF를 융착접속시켜 만든 광섬유 간섭계의 온도 및 스트레인에 대한 광학적 특성을 분석하였다. PBGF 또는 LMA-PCF와 HOF의 융착접속시 광섬유내 공기구멍을 최대한 유지하도록 융착조건을 최적화하여 접속 손실을 줄였다. PBGF와 HOF로 구성된 광섬유 간섭계의 온도 및 스트레인에 대한 민감도는 각각 15.4 pm/$^{\circ}C$와 0.24 pm/${\mu}\varepsilon$으로 측정되었으며, LMA-PCF와 HOF로 구성된 광섬유 간섭계의 온도 및 스트레인에 대한 민감도는 각각 17.4 pm/$^{\circ}C$와 0.2 pm/${\mu}\varepsilon$으로 측정되었다.

Keywords

References

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). https://doi.org/10.1364/OL.22.000961
  2. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851 (2003). https://doi.org/10.1038/nature01940
  3. P. St. J. Russell, “Photonic-crystal fibers,” IEEE J. Lightwave Technol. 24, 4729-4749 (2006). https://doi.org/10.1109/JLT.2006.885258
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003). https://doi.org/10.1038/nature01849
  5. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005). https://doi.org/10.1364/OPEX.13.000236
  6. T. Y. Cho, G. H. Kim, K. Lee, and S. B. Lee, “Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties,” J. Opt. Soc. Korea 12, 19-24 (2008). https://doi.org/10.3807/JOSK.2008.12.1.019
  7. L. Xiao, M. S. Demokan, W. Jin, and Y. Wang, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” IEEE J. Lightwave Technol. 25, 3563-3574 (2007). https://doi.org/10.1109/JLT.2007.907787
  8. J. S. Ahn, K. N. Park, G. H. Kim, S. B. Lee, and K. S. Lee, “Low loss fusion splicing of photonic crystal fiber and single-mode fiber,” Journal of the Institute of Electronics of Engineers of Korea-SD 46, 529-535 (2009).
  9. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” IEEE J. Lightwave Technol. 23, 524-532 (2005). https://doi.org/10.1109/JLT.2004.842307
  10. Z. Tian, S. S-H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105-1107 (2008). https://doi.org/10.1364/OL.33.001105
  11. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29, 346-348 (2004). https://doi.org/10.1364/OL.29.000346
  12. G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, Y.-G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17, 2481-2486 (2009). https://doi.org/10.1364/OE.17.002481
  13. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazao, P. Caldas, J. L. Santos, F. M. Araujo, H. Latifi, F. Farahio, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17, 18669-18675 (2009). https://doi.org/10.1364/OE.17.018669
  14. A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Optical Fiber Technology 6, 83-90 (2000). https://doi.org/10.1006/ofte.1999.0310
  15. S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode-coupling device applicartions,” IEEE J. Lightwave Technol. 27, 4919-4926 (2009). https://doi.org/10.1109/JLT.2009.2028162