Optical Acetylene Gas Detection using a Photonic Bandgap Fiber and Fiber Bragg Grating

광섬유 격자와 포토닉 밴드갭 광섬유를 이용한 아세틸렌가스 검출

  • Lee, Yun-Kyu (School of information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Kyung-Shik (School of information and Communication Engineering, Sungkyunkwan University)
  • 이윤규 (성균관대학교 정보통신공학부) ;
  • 이경식 (성균관대학교 정보통신공학부)
  • Received : 2010.04.27
  • Accepted : 2010.07.02
  • Published : 2010.07.25

Abstract

We propose an optical gas sensor, which consists of a hollow core photonic bandgap fiber (HC-PBGF) and fiber Bragg grating (FBG), for the detection of acetylene gas. The gas detection scheme is uniquely characterized by modulating the Bragg wavelength of the fiber Bragg grating around a selected absorption line of gas filled in the photonic bandgap fiber. In the measurement, a 2m-long HC-PBGF and FBG with a Bragg wavelength of 1539.02nm were used. The FBG was modulated at 2Hz. We demonstrated that the optical fiber gas sensor was able to selectively measure the 2.5% and 5% of acetylene gases.

할로우 코어 포토닉 밴드갭 광섬유(hollow core photonic bandgap fiber, HC-PBGF)와 광섬유 브래그 격자(fiber Bragg grating, FBG)를 이용하여 새로운 형태의 가스 검출 방식을 제안하였다. 제안하는 가스 측정 방식에서는 할로우 코어 포토닉밴드갭 광섬유에 채워진 가스의 흡수 스펙트럼을 우선 측정하고, 광섬유 브래그 격자를 파장 변조함으로써 얻어진 신호로부터 가스 농도에 대한 정보를 얻을 수 있다. 가스 측정 실험에서는 2m의 할로우 코어 포토닉 밴드갭 광섬유와 중심 파장이 1539.02nm인 광섬유 브래그 격자를 사용하였으며, 광섬유 브래그 격자의 반사파장을 1539.3nm에서 1539.6nm까지 2Hz의 주기로 가변하였다. 제안하는 가스센서는 2.5%, 5%의 아세틸렌가스를 선별적으로 잘 검출할 수 있다는 것을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 학술진흥재단

References

  1. J. H. Visser and R. E. Soltis, "Automotive exhaust gas sensing systems," IEEE Trans. Instrum. Meas. 50, pp. 1543-1550 (2001). https://doi.org/10.1109/19.982942
  2. S . S ch ilt, L . T hév en az, M . N ik lès , L . Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta Part A 60, pp. 3259-3268 (2004). https://doi.org/10.1016/j.saa.2003.11.032
  3. J. P. Besson, S. Schilt, E. Rochat, and L. Thevenaz, "Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy," Appl. Phys. B 85, pp. 323-328 (2006). https://doi.org/10.1007/s00340-006-2335-6
  4. G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, "Optical fibre instrumentation for environmental monitoring applications," J. Opt. A Pure Appl. Opt. 5, pp. S140-S145 (2003). https://doi.org/10.1088/1464-4258/5/5/355
  5. H. K. Jones and J. Elgy, "Remote sensing to assess landfill gas migration," Waste Manage.Res. 12, pp. 327-337 (1994). https://doi.org/10.1177/0734242X9401200405
  6. U. Willer, D. Sheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, "Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics," Spectrochim. Acta Part A 58, pp. 2427-2432 (2002). https://doi.org/10.1016/S1386-1425(02)00058-6
  7. J. M. Coronado, S. Kataoka, I. T. Tejedor and M. A. Anderson, "Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2: simultaneous FTIR analysis of gas and surface species," Journal of Catalysis, 219, pp. 219-230 (2003). https://doi.org/10.1016/S0021-9517(03)00199-4
  8. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near-and mid-infrared laser-optical sensors for gas analysis," Optics and Lasers in Engineering, 37, pp. 101-114 (2002). https://doi.org/10.1016/S0143-8166(01)00092-6
  9. R. M. Mihalcea, D. S. Baer and R. K. Hanson, "Diode laser sensor for measurements of CO, CO2 and CH4 in combustion flows," Applied Optics, 36, pp. 8745-8752 (1997) https://doi.org/10.1364/AO.36.008745
  10. A. T. Alavie, S. E. Karr, A. Othonos and R. M Measures, "A multiplexed bragg grating fiber laser system", IEEE Photon. Technol. Lett., 5, pp. 1112-1114 (1993). https://doi.org/10.1109/68.257209