• Title/Summary/Keyword: Photon attenuation

Search Result 89, Processing Time 0.02 seconds

Comparison of Parallel and Fan-Beam Monochromatic X-Ray CT Using Synchrotron Radiation

  • Toyofuku, Fukai;Tokumori, Kenji;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.407-410
    • /
    • 2002
  • Monochromatic x-ray CT has several advantages over conventional CT, which utilizes bremsstrahlung white x-rays from an x-ray tube. There are several methods to produce such monochromatic x-rays. The most popular one is crystal diffraction monochromatization, which has been commonly used because of the fact that the energy spread is very narrow and the energy can be changed continuously. The alternative method is the use of fluorescent x-ray, which has several advantages such as large beam size and fast energy change. We have developed a parallel-beam and a fan-beam monochromatic x-ray CT, and compared some characteristics such as accuracy of CT numbers between those systems. The fan beam monochromatic x-rays were generated by irradiating target materials by incident white x-rays from a bending magnet beam line NE5 in 6.5 GeV Accumulation Ring at Tukuba. The parallel beam monochromatic x-rays were generated by using a silicon double crystal monochromator at the bending magnet beam line BL-20BM in Spring-8. A Cadmium telluride (CdTe) 256 channel array detector with 512mm sensitive width capable of operating at room temperature was used in the photon counting mode. A cylindrical phantom containing eight concentrations of gadolinium was used for the fan beam monochromatic x-ray CT system, while a phantom containing acetone, ethanol, acrylic and water was used for the parallel monochromatic x-ray CT system. The linear attenuation coefficients obtained from CT numbers of those monochromatic x-ray CT images were compared with theoretical values. They showed a good agreement within 3%. It was found that the quantitative measurement can be possible by using the fan beam monochromatic x-ray CT system as well as a parallel beam monochromatic X-ray CT system.

  • PDF

Quality Assessment for Elbow CT scan by positioning and respiratory control (팔꿈치관절 CT검사에서 환자 자세 및 호흡에 따른 화질평가)

  • Lim, Jong-Chun;Park, Sang-Hyun;Lee, In-Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.110-114
    • /
    • 2017
  • Because the arm can't be sutured due to fracture during a elbow CT scan, a CT scan is proceeded in a state of abdomen and L-spire are overlapped which beam hardening artifact is done many times, and it often lowers the quality of elbow CT images. So there are many difficulties in reading and due to increase in radiation dose from it, the number of patient's exposure keeps increasing. In this research, it plans to improve the quality of the images by avoiding overlap with abdomen, and increasing the number of photon overlapped with lung field which the line attenuation is relatively small. The way of experiment is based on patient's right elbow and place him as head first position, then place his elbow at L2-3 level in supine position, turn about 30 degrees to the left in non-control breathing and in supine position, and compared with full inspiration after overlapping with lung. After figuring out the average value and standard deviation data using Image J program 5 times each for 16, 128 channels, the evaluation is proceeded by measuring each of CNR, MSR are statistically analyzed using SPSS program. Therefore, through positioning and inspiration during elbow CT scan, the way of inspection minimized the exposure radiation dose, and seems to be meaningful in a way to improve the quality of the images.

Normal Control Study of Cerebral Blood Flow by Tc-99m HM-PAO SPECT ($^{99m}TC-HMPAO$ SPECT를 이용한 정상인 국소뇌혈류의 정량적 분석)

  • Moon, Dae-Hyuk;Lee, Bum-Woo;Lee, Kyung-Han;Choi, Yoon-Ho;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Yoon, Byung-Woo;Lee, Nam-Soo;Roh, Jae-Kyu;Myung, Ho-Jin;Koong, Sung-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.23 no.2
    • /
    • pp.155-163
    • /
    • 1989
  • Regional cerebral perfusion was evaluated in 15 normal controls by single photon emission computed tomography using $^{99m}Tc$ HM-PAO. For quantitative analysis, 13 pairs of homologous region of interest (ROI) were drawn on three transverse slices matching the vascular territories and cerebral cortices, and normal values of 3 semiqunatitative indices including 'Right to left ratio'(R/L ratio), 'Regional index'(RI), and 'Region to cerebellum ratio'(R/cbll ratio) were calculated. Mean values of R/L ratios of homotogous regions were ranged from 0.985 to 1.023, and mean ${\pm}2$ s.d. of all regions did not exceed 11% of mean. Significant difference of RIs (mean count per voxel of a ROI/mean count per voxel of total ROIs) between regions were found (p<0.001) with highest values in occipital cortex and cerebellum. After attenuation correction, RIs in deep gray, cranial portion of anterior cerebral artery and vascular territories in the 2nd slice increased significantly (p < 0.05-0.001), but vise versa in other ROIs. Region to cerebellum ratios also showed regional difference similar to RIs.

  • PDF

A study of Curved Dosimeter for Flattening Filter Free Beam Quality Assurance Evaluation using Curved Dosimeter in Radiotherapy (Flattening Filter Free Beam의 정도관리를 위한 곡면선량계 가능성 연구)

  • Han, Moojae;Shin, Yohan;Jung, Jaehoon;Heo, Seunguk;Kim, Kyotae;Heo, Yeji;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.119-124
    • /
    • 2019
  • Radiation therapy using flattening filter free beam can prevent beam attenuation caused by flattening filter and can improve treatment efficiency. However, accurate dose control is not established for nonuniform iso dose distributions. In this study, curved dosimeter based on photoconductive material $HgI_2$ was fabricated and its reproducibility and linearity were evaluated at 6 MV photon energy to verify its performance. In order to show the usefulness of the curved measurement, the signals measured on the flat substrate and the curved substrate were compared in the flattening filter free beam using the acrylic filter. As a result, the reproducibility of the unit cell dosimeter was evaluated as SE 0.613%, and the linearity was evaluated as R-sq 0.9999. The usability evaluation of the array curve dosimeter demonstrated its usefulness by indicating a curvature error rate of 11.073%p and a reduced error rate.

Early Detection of hyperemia with Magnetic Resonance Fluid Attenuation Inversion Recovery Imaging after Superficial Temporal Artery to Middle Cerebral Artery Anastomosis

  • Jin Eun;Ik Seong Park
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.4
    • /
    • pp.442-450
    • /
    • 2024
  • Objective : Cerebral hyperperfusion syndrome (CHS) manifests as a collection of symptoms brought on by heightened focal cerebral blood flow (CBF), afflicting nearly 30% of patients who have undergone superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis. The aim of this study was to investigate whether the amalgamation of magnetic resonance imaging (MRI) fluid-attenuated inversion recovery (FLAIR) and apparent diffusion coefficient (ADC) imaging via MRI can discern cerebral hyperemia after STA-MCA anastomosis surgery. Methods : A retrospective study was performed of patients who underwent STA-MCA anastomosis due to Moyamoya disease or atherosclerotic steno-occlusive disease. A protocol aimed at preventing CHS was instituted, leveraging the use of MRI FLAIR. Patients underwent MRI diffusion with FLAIR imaging 24 hours after STA-MCA anastomosis. A high signal on FLAIR images signified the presence of hyperemia at the bypass site, triggering a protocol of hyperemia care. All patients underwent hemodynamic evaluations, including perfusion MRI, single-photon emission computed tomography (SPECT), and digital subtraction angiography, both before and after the surgery. If a high signal intensity is observed on MRI FLAIR within 24 hours of the surgery, a repeat MRI is performed to confirm the presence of hyperemia. Patients with confirmed hyperemia are managed according to a protocol aimed at preventing further progression. Results : Out of a total of 162 patients, 24 individuals (comprising 16 women and 8 men) exhibited hyperemia on their MRI FLAIR scans following the procedure. SPECT was conducted on 23 patients, and 11 of them yielded positive results. All 24 patients underwent perfusion MRI, but nine of them showed no significant findings. Among the patients, 10 displayed elevations in both CBF and cerebral blood volume (CBV), three only showed elevation in CBF, and two only showed elevation in CBV. Follow-up MRI FLAIR scans conducted 6 months later on these patients revealed complete normalization of the previously observed high signal intensity, with no evidence of ischemic injury. Conclusion : The study determined that the use of MRI FLAIR and ADC mapping is a competent means of early detection of hyperemia after STA-MCA anastomosis surgery. The protocol established can be adopted by other neurosurgical institutions to enhance patient outcomes and mitigate the hazard of permanent cerebral injury caused by cerebral hyperemia.

Compare the Clinical Tissue Dose Distributions to the Derived from the Energy Spectrum of 15 MV X Rays Linear Accelerator by Using the Transmitted Dose of Lead Filter (연(鉛)필터의 투과선량을 이용한 15 MV X선의 에너지스펙트럼 결정과 조직선량 비교)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.80-88
    • /
    • 2008
  • Recent radiotherapy dose planning system (RTPS) generally adapted the kernel beam using the convolution method for computation of tissue dose. To get a depth and profile dose in a given depth concerened a given photon beam, the energy spectrum was reconstructed from the attenuation dose of transmission of filter through iterative numerical analysis. The experiments were performed with 15 MV X rays (Oncor, Siemens) and ionization chamber (0.125 cc, PTW) for measurements of filter transmitted dose. The energy spectrum of 15MV X-rays was determined from attenuated dose of lead filter transmission from 0.51 cm to 8.04 cm with energy interval 0.25 MeV. In the results, the peak flux revealed at 3.75 MeV and mean energy of 15 MV X rays was 4.639 MeV in this experiments. The results of transmitted dose of lead filter showed within 0.6% in average but maximum 2.5% discrepancy in a 5 cm thickness of lead filter. Since the tissue dose is highly depend on the its energy, the lateral dose are delivered from the lateral spread of energy fluence through flattening filter shape as tangent 0.075 and 0.125 which showed 4.211 MeV and 3.906 MeV. In this experiments, analyzed the energy spectrum has applied to obtain the percent depth dose of RTPS (XiO, Version 4.3.1, CMS). The generated percent depth dose from $6{\times}6cm^2$ of field to $30{\times}30cm^2$ showed very close to that of experimental measurement within 1 % discrepancy in average. The computed dose profile were within 1% discrepancy to measurement in field size $10{\times}10cm$, however, the large field sizes were obtained within 2% uncertainty. The resulting algorithm produced x-ray spectrum that match both quality and quantity with small discrepancy in this experiments.

  • PDF

Development of a New Cardiac and Torso Phantom for Verifying the Accuracy of Myocardial Perfusion SPECT (심근관류 SPECT 검사의 정확도 검증을 위한 새로운 심장.흉부 팬텀의 개발)

  • Yamamoto, Tomoaki;Kim, Jung-Min;Lee, Ki-Sung;Takayama, Teruhiko;Kitahara, Tadashi
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2008
  • Corrections of attenuation, scatter and resolution are important in order to improve the accuracy of single photon emission computed tomography (SPECT) image reconstruction. Especially, the heart movement by respiration and beating cause the errors in the corrections. Myocardial phantom is used to verify the correction methods, but there are many different parts in the current phantoms in actual human body. Therefore the results using a phantom are often considered apart from the clinical data. We developed a new phantom that implements the human body structure around the thorax more faithfully. The new phantom has the small mediastinum which can simulate the structure in which the lung adjoins anterior, lateral and apex of myocardium. The container was made of acrylic and water-equivalent material was used for mediastinum. In addition, solidified polyurethane foam in epoxy resin was used for lung. Five different sizes of myocardium were developed for the quantitative gated SPECT (QGS). The septa of all different cardiac phantoms were designed so that they can be located at the same position. The proposed phantom was attached with liver and gallbladder, the adjustment was respectively possible for the height of them. The volumes of five cardiac ventricles were 150.0, 137.3, 83.1, 42.7 and 38.6ml respectively. The SPECT were performed for the new phantom, and the differences between the images were examined after the correction methods were applied. The three-dimensional tomography of myocardium was well reconstructed, and the subjective evaluations were done to show the difference among the various corrections. We developed the new cardiac and torso phantom, and the difference of various corrections was shown on SPECT images and QGS results.

  • PDF

Development of Lead Free Shielding Material for Diagnostic Radiation Beams (의료영상용 방사선방호를 위한 무납차폐체 개발)

  • Choi, Tae-Jin;Oh, Young-Kee;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.232-237
    • /
    • 2010
  • The shielding materials designed for replacement of lead equivalent materials for lighter apron than that of lead in diagnostic photon beams. The absorption characteristics of elements were applied to investigate the lead free material for design the shielding materials through the 50 kVp to 110 kVp x-ray energy in interval of 20 kVp respectively. The idea focused to the effect of K-edge absorption of variable elements excluding the lead material for weight reduction. The designed shielding materials composited of Tin 34.1%, Antimon 33.8% and Iodine 26.8% and Polyisoprene 5.3% gram weight account for 84 percent of weight of lead equivalent of 0.5 mm thickness. The size of lead-free shielder was $200{\times}200{\times}1.5\;mm^3$ and $3.2\;g/cm^3$ of density which is equivalent to 0.42 mm of Pb. The lead equivalent of 0.5 mm thickness generally used for shielding apron of diagnostic X rays which is transmitted 0.1% for 50 kVp, 0.9% for 70 kVp and 3.2% for 90 kVp and 4.8% for 110 kVp in experimental measurements. The experiment of transmittance for lead-free shielder has showed 0.3% for 50 kVp, 0.6% for 70 kVp, 2.0% for 90 kVp and 4.2% for 110 kVp within ${\pm}0.1%$. respectively. Using the attenuation coefficient of experiments for 0.5 mm Pb equivalent of lead-free materials showed 0.1%. 0.3%, 1.0% and 2.4%, respectively. Furthermore, the transmittance of lead-free shielder for scatter rays has showed the 2.4% in operation energy of 50 kVp and 5.9% in energy of 110 kVp against 2.4% and 5.1% for standard lead thickness within ${\pm}0.2%$ discrepancy, respectively. In this experiment shows the designed lead-free shielder is very effective for reduction the apron weight in diagnostic radiation fields.

Comparison of Clinical Usefulness between N-13 Ammonia PET/CT and Tc-99m Sestamibi SPET in Coronary Artery Disease (관상동맥질환에서 N-13 암모니아 PET/CT와 Tc-99m 세스타미비 SPECT의 임상 유용성 비교)

  • Kong, Eun-Jung;Cho, Ihn-Ho;Chun, Kyung-Ah;Won, Kyu-Chang;Lee, Hyung-Woo;Park, Jeong-Sun;Shin, Dong-Gu;Kim, Young-Jo;Shim, Bong-Seop
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.354-361
    • /
    • 2008
  • Purpose: N-13 ammonia uptake and retention in the myocardium is related to perfusion and metabolism. There are several potential advantages of N-13 ammonia positron emission tomography (PET) to detect myocardial ischemia, such as higher spatial resolution, greater counting efficiencies, and robust attenuation correction. But there are few reports comparing Tc-99m myocardial perfusion single photon emission tomography (MPS) and N-13 ammonia PET. We thus compared adenosine stress N-13 ammonia PET/CT and Tc-99m sestamibi MPS in patients with suspected coronary artery stenosis. Materials and Methods: Seventeen patients (male 13 : $63{\pm}11$ years old) underwent adenosine stress N-13 ammonia PET/CT (Discovery ST, GE), Tc-99m sestamibi MPS (dual head gamma camera, Hawkeye, GE) and coronary angiography within 1 week. N-13 ammonia PET/CT and Tc-99m sestamibi MPS images were assessed with a 20-segment model by visual interpretation and quantitative analysis using automatic quantitative software (Myovation, GE). Results: Both sensitivities and specificities of detecting an individual coronary artery stenosis were higher for N-13 ammonia PET/CT than Tc-99m sestamibi MPS (PET/CT: 91%/89% vs MPS: 65%/82%). N-13 ammonia PET/CT showed reversibility in 52% of segments that were considered non-reversibile by Tc-99m sestamibi MPS. In the 110 myocardial segments supplied by the stenotic coronary artery, N-13 ammonia PET/CT showed higher count densities than Tc-99m MPS on rest study (p < 0.01), and the difference of count density between the stress and the rest studies was also larger on N-13 ammonia PET/CT. Conclusion: Adenosine stress N-13 ammonia PET/CT had higher diagnostic sensitivity and specificity, more reversibility of perfusion defects and greater stress/rest uptake differences than Tc-99m sestamibi MPS. Accordingly, N-13 ammonia PET/CT might offer better assessment of myocardial ischemia and viability.