• 제목/요약/키워드: Photoelectrochemical water splitting

검색결과 69건 처리시간 0.025초

태양에너지를 이용한 수소제조 (Hydrogen Production by Water Splitting with Solar Energy)

  • 이태규
    • 에너지공학
    • /
    • 제15권2호
    • /
    • pp.96-106
    • /
    • 2006
  • 다양한 수소에너지의 생산방법 중에서 진정으로 청정하고 지속가능한 유일한 기술이 물로부터 수소를 획득하는 태양-수소제조 시스템이다. 태양에너지를 활용한 물로부터 수소생산 연구는 1979년 일본 동경대학의 Honda와 Fujishima 교수의 광전기화학적 방법이 성공적으로 제시된 이래로 매우 많은 연구가 진행되어 오고 있다. 이러한 관심은 가시광 광촉매 제조, 광전기화학전지 등의 개발을 유발하였으며, 융합기술의 하나인 바이오-광촉매 복합시스템 구성 등의 연구를 도출시켰다. 본 고에서는 이들 태양의 광에너지를 직접 활용한 물분해 수소생산 기술을 소개하였으나 태양열을 이용한 수소 제조기술은 포함시키지 않았다.

Photoelectrochemical Water Splitting on a Delafossite CuGaO2 Semiconductor Electrode

  • Lee, Myeongsoon;Kim, Don;Yoon, Yong Tae;Kim, Yeong Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3261-3266
    • /
    • 2014
  • A pellet of polycrystalline $CuGaO_2$ with a delafossite structure was prepared from $Ga_2O_3$ and CuO by high-temperature solid-state synthesis. The $CuGaO_2$ pellet was a p-type semiconductor for which the electrical conductivity, carrier density, carrier mobility and Seebeck coefficient were $5.34{\times}10^{-2}{\Omega}^{-1}cm^{-1}$, $3.5{\times}10^{20}cm^{-3}$, $9.5{\times}10^{-4}cm^2V^{-1}s^{-1}$ at room temperature, and $+360{\mu}V/K$, respectively. It also exhibited two optical transitions at about 2.7 and 3.6 eV. The photoelectrochemical properties of the $CuGaO_2$ pellet electrode were investigated in aqueous electrolyte solutions. The flat-band potential of this electrode, determined using a Mott-Schottky plot, was +0.18 V vs SCE at pH 4.8 and followed the Nernst equation with respect to pH. Under UV light illumination, a cathodic photocurrent developed, and molecular hydrogen simultaneously evolved on the surface of the electrode due to the direct reduction of water without deposition of any metal catalyst.

Carbon Nanotube Passivation layer for Increasing the Solar Water Splitting Performance of CdS/CuInGaSe Photocathode

  • Bae, Hyojung;Ko, Young-Hee;Park, Jun-Beom;Ko, Hang-Ju;Ryu, Sang-Wan;Ha, Jun-Seok
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.107-111
    • /
    • 2019
  • We report the fabrication of a CdS/CuInGaSe (CdS/CIGS) structure with carbon nanotubes and its application as a photocathode for photoelectrochemical water splitting. CIGS thin films were fabricated using co-evaporation by RF magnetron sputtering, while CdS was fabricated by chemical bath deposition. Spray coated multi-wall carbon nanotube (CNT) film on CdS/CIGS thin film was investigated as a photocathode. The CNT-coated CdS/CIGS showed superior photocurrent density and exhibited improved photostability.

Cu2O Thin Film Photoelectrode Embedded with CuO Nanorods for Photoelectrochemical Water Oxidation

  • Kim, Soyoung;Kim, Hyojin
    • 한국표면공학회지
    • /
    • 제52권5호
    • /
    • pp.258-264
    • /
    • 2019
  • Assembling heterostructures by combining dissimilar oxide semiconductors is a promising approach to enhance charge separation and transfer in photoelectrochemical (PEC) water splitting. In this work, the CuO nanorods array/$Cu_2O$ thin film bilayered heterostructure was successfully fabricated by a facile method that involved a direct electrodeposition of the $Cu_2O$ thin film onto the vertically oriented CuO nanorods array to serve as the photoelectrode for the PEC water oxidation. The resulting copper-oxide-based heterostructure photoelectrode exhibited an enhanced PEC performance compared to common copper-oxide-based photoelectrodes, indicating good charge separation and transfer efficiency due to the band structure realignment at the interface. The photocurrent density and the optimal photocurrent conversion efficiency obtained on the CuO nanorods/$Cu_2O$ thin film heterostructure were $0.59mA/cm^2$ and 1.10% at 1.06 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for visible-light-driven hydrogen generation using a facile, low-cost, and scalable approach of combining electrodeposition and hydrothermal synthesis.

Cupric oxide thin film as an efficient photocathode for photoelectrochemical water reduction

  • Park, Jong-Hyun;Kim, Hyojin
    • 한국표면공학회지
    • /
    • 제55권2호
    • /
    • pp.63-69
    • /
    • 2022
  • Preparing various types of thin films of oxide semiconductors is a promising approach to fabricate efficient photoanodes and photocathodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility of an efficient photocathode for PEC water reduction of a p-type oxide semiconductor cupric oxide (CuO) thin film prepared via a facile method combined with sputtering Cu metallic film on fluorine-doped thin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Cu metallic film in dry air. Characterization of the structural, optical, and PEC properties of the CuO thin film prepared at various Cu sputtering powers reveals that we can obtain an optimum CuO thin film as an efficient PEC photocathode at a Cu sputtering power of 60 W. The photocurrent density and the optimal photocurrent conversion efficiency for the optimum CuO thin film photocathode are found to be -0.3 mA/cm2 and 0.09% at 0.35 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for sunlight-driven hydrogen generation using a facile method.

Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting

  • Shahid, Muhammad;Choi, Seo-Yeong;Liu, Jingling;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2271-2275
    • /
    • 2013
  • We report on the photoelectrochemical properties of partially reduced mesoporous titania thin films. The fabrication is achieved by synthesizing mesoporous titania thin films through the self-assembly of a titania precursor and a block copolymer, followed by aging and calcination, and heat-treatment under a $H_2$ (1 torr) environment. Depending on the temperature used for the reaction with $H_2$, the degree of the reduction (generation of oxygen vacancies) of the titania is controlled. The oxygen vacancies induce visible light absorption, and decrease of resistance while the mesoporosity is practically unaltered. The photoelectrochemical activity data on these films, by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5G 100 mW $cm^{-2}$ illumination, show that the three effects of the oxygen vacancies contribute to the enhancement of the photoelectrochemical properties of the mesoporous titania thin films. The results show that these oxygen deficient $TiO_2$ mesoporous thin films hold great promise for a solar hydrogen generation. Suggestions for the materials design for improved photoelectrochemical properties are made.

원자층증착법을 이용한 수소 생성용 광전기화학 전극 소재 개발 동향 (Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition)

  • 한정환
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.60-68
    • /
    • 2018
  • The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.

Preparation of TiO2 Nanotube Arrays from Thin Film Grown by RF Sputtering

  • Kim, Chang Woo
    • Applied Science and Convergence Technology
    • /
    • 제27권5호
    • /
    • pp.105-108
    • /
    • 2018
  • Transparent $TiO_2$ nanotube arrays are successfully prepared by a two-step approach involving electrochemical anodization and RF magnetron sputtering. First, a Ti film is deposited on an FTO substrate by RF magnetron sputtering at room temperature. The morphologies of the Ti film are controlled by the working distance, Ar flow, and DC power. Second, an anodization treatment is electrochemically performed for the formation of nanotube arrays from the deposited Ti film, followed by post-annealing treatment in air for the formation of $TiO_2$ crystallization. The back side of the crystallized $TiO_2$ nanotube arrays is illuminated with solar light to characterize the photoelectrochemical reaction, and their photoelectrochemical properties are investigated. This work provides information on application of a thin film deposited by RF sputtering in the field of photoelectrochemical water splitting.

물분해용 Cu2O 박막/ZnO 나노막대 산화물 p-n 이종접합 광전극의 광전기화학적 특성 (Photoelectrochemical Properties of a Cu2O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting)

  • 박정환;김효진;김도진
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.214-220
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical(PEC) properties of a $Cu_2O$ thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in $Cu_2O$ thin film as an efficient photoelectrode for solar-driven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/ZnO$ p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/ZnO$ photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.77mA/cm^2$ at 0.5 V vs $Hg/HgCl_2$ in a $1mM\;Na_2SO_4$ electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs $Hg/HgCl_2$, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.

MBE 법에 의해 성장된 고종횡비 InGaN 나노와이어 광촉매 (High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy)

  • 안소연;전대우;황종희;라용호
    • 한국결정성장학회지
    • /
    • 제29권4호
    • /
    • pp.143-148
    • /
    • 2019
  • 우리는 분자선 에피택시(Molecular Beam Epitaxy) 법을 사용하여 광전기화학적 물분해 수소생산용 고종횡비 GaN 기반 나노와이어를 Si 기판 위에 성공적으로 제작하였다. 주사전자현미경(SEM)과 에너지분산형 분광법(EDX)은 p-GaN:Mg 및 p-InGaN 나노와이어가 고밀도와 함께 수직으로 성장 되었음을 증명하였다. 또한, p-InGaN 나노와이어의 발광 파장을 552 nm에서 590 nm까지의 조절이 가능하다는 것을 확인하였다. 이렇게 제작된 p-InGaN 나노와이어는 태양광을 통해 외부 전위 없이 물분해가 가능한 수소생산용 광촉매로써 매우 유용하게 사용될 수 있다.