DOI QR코드

DOI QR Code

Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting

  • Shahid, Muhammad (Department of Chemistry, BK-21 School of Chemical Materials Science, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Choi, Seo-Yeong (Department of Chemistry, BK-21 School of Chemical Materials Science, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Liu, Jingling (Department of Chemistry, BK-21 School of Chemical Materials Science, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Kwon, Young-Uk (Department of Chemistry, BK-21 School of Chemical Materials Science, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
  • Received : 2013.03.28
  • Accepted : 2013.05.03
  • Published : 2013.08.20

Abstract

We report on the photoelectrochemical properties of partially reduced mesoporous titania thin films. The fabrication is achieved by synthesizing mesoporous titania thin films through the self-assembly of a titania precursor and a block copolymer, followed by aging and calcination, and heat-treatment under a $H_2$ (1 torr) environment. Depending on the temperature used for the reaction with $H_2$, the degree of the reduction (generation of oxygen vacancies) of the titania is controlled. The oxygen vacancies induce visible light absorption, and decrease of resistance while the mesoporosity is practically unaltered. The photoelectrochemical activity data on these films, by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5G 100 mW $cm^{-2}$ illumination, show that the three effects of the oxygen vacancies contribute to the enhancement of the photoelectrochemical properties of the mesoporous titania thin films. The results show that these oxygen deficient $TiO_2$ mesoporous thin films hold great promise for a solar hydrogen generation. Suggestions for the materials design for improved photoelectrochemical properties are made.

Keywords

References

  1. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  2. Juan, L. V.-E.; Ya-Dong, C.; Kevin, C. W. W.; Yusuke, Y. Sci. Technol. Adv. Mater. 2012, 13, 013003. https://doi.org/10.1088/1468-6996/13/1/013003
  3. Carreon, M. A.; Choi, S. Y.; Mamak, M.; Chopra, N.; Ozin, G. A. Journal of Materials Chemistry 2007, 17, 82. https://doi.org/10.1039/b612550f
  4. Hou, K.; Tian, B.; Li, F.; Bian, Z.; Zhao, D.; Huang, C. Journal of Materials Chemistry 2005, 15, 2414. https://doi.org/10.1039/b417465h
  5. Hung, I. M.; Wang, Y.; Lin, L.-T.; Huang, C.-F. J. Porous Mater 2010, 17, 509. https://doi.org/10.1007/s10934-009-9314-3
  6. Korzhak, A. V.; Ermokhina, N. I.; Stroyuk, A. L.; Bukhtiyarov, V. K.; Raevskaya, A. E.; Litvin, V. I.; Kuchmiy, S. Y.; Ilyin, V. G.; Manorik, P. A. Journal of Photochemistry and Photobiology A: Chemistry 2008, 198, 126. https://doi.org/10.1016/j.jphotochem.2008.02.026
  7. Hartmann, P.; Lee, D.-K.; Smarsly, B. M.; Janek, J. ACS Nano 2010, 4, 3147. https://doi.org/10.1021/nn1004765
  8. Bae, S. W.; Borse, P. H.; Hong, S. J.; Jang, J. S.; Lee, J. S.; Jeong, E. D.; Hong, T. E.; Yoon, J. H.; Jin, J. S.; Kim, H. G. Journal of the Korean Physical Society 2007, 51, S22-S26. https://doi.org/10.3938/jkps.51.22
  9. Anandan, S.; Kathiravan, K.; Murugesan, V.; Ikuma, Y. Catalysis Communications 2009, 10, 1014. https://doi.org/10.1016/j.catcom.2008.12.054
  10. Dunnill, C. W.; Parkin, I. P. Dalton Transactions 2011, 40, 1635. https://doi.org/10.1039/c0dt00494d
  11. Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Applied Catalysis B: Environmental 2009, 91, 355. https://doi.org/10.1016/j.apcatb.2009.06.001
  12. Loganathan, K.; Bommusamy, P.; Muthaiahpillai, P.; Velayutham, M. Environmental Engineering Research 2011, 16, 81-90. https://doi.org/10.4491/eer.2011.16.2.81
  13. Bayati, M. R.; Aminzare, M.; Molaei, R.; Sadrnezhaad, S. K. Materials Letters 2011, 65, 840. https://doi.org/10.1016/j.matlet.2010.12.006
  14. Nah, Y.-C.; Paramasivam, I.; Schmuki, P. ChemPhysChem 2010, 11, 2698. https://doi.org/10.1002/cphc.201000276
  15. Janotti, A.; Varley, J. B.; Rinke, P.; Umezawa, N.; Kresse, G.; Van De Walle, C. G. Physical Review B - Condensed Matter and Materials Physics 2010, 81.
  16. Batzill, M.; Katsiev, K.; Gaspar, D. J.; Diebold, U. Physical Review B - Condensed Matter and Materials Physics 2002, 66, 2354011-23540110.
  17. Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Letters 2011, 11, 3026. https://doi.org/10.1021/nl201766h
  18. Zheng, L. Sensors and Actuators B: Chemical 2003, 88, 115. https://doi.org/10.1016/S0925-4005(02)00302-7
  19. Ni, Z.; Jun Jun, C.; Shima, H.; Akinaga, H. Electron Device Letters, IEEE 2012, 33, 1009. https://doi.org/10.1109/LED.2012.2193658
  20. Zhou, W.; Zhong, X.; Wu, X.; Yuan, L.; Shu, Q.; Xia, Y. Journal of the Korean Physical Society 2006, 49, 2168-2175.
  21. Koh, C.-W.; Lee, U. H.; Song, J.-K.; Lee, H.-R.; Kim, M.-H.; Suh, M.; Kwon, Y.-U. Chemistry - An Asian Journal 2008, 3, 862. https://doi.org/10.1002/asia.200700331
  22. Grosso, D.; Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Cagnol, F.; Sinturel, C.; Bourgeois, A.; Brunet-Bruneau, A.; Amenitsch, H.; Albouy, P. A. Sanchez, C. Chemistry of Materials 2003, 15, 4562. https://doi.org/10.1021/cm031060h
  23. Lee, U. H.; Kim, M. H.; Kwon, Y. U. Bulletin of the Korean Chemical Society 2006, 27, 808-816. https://doi.org/10.5012/bkcs.2006.27.6.808
  24. Wu, C.-W.; Ohsuna, T.; Kuwabara, M.; Kuroda, K. Journal of the American Chemical Society 2006, 128, 4544. https://doi.org/10.1021/ja060453p
  25. Scepanovic , M.; Gruji -Brojcin, M.; Miriae, M.; Dohcevi - Mitrovic, Z.; Popovic, Z. V. Acta Physica Polonica A 2009, 116, 603-606.
  26. Lei, Y.; Liu, H.; Xiao, W. Modelling and Simulation in Materials Science and Engineering 2010, 18.
  27. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Science 2002, 297, 2243-2245. https://doi.org/10.1126/science.1075035
  28. Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. Journal of Materials Research 2010, 25, 3. https://doi.org/10.1557/JMR.2010.0020
  29. Eppler, A. M.; Ballard, I. M.; Nelson, J. Physica. E 2002, 14, 197. https://doi.org/10.1016/S1386-9477(02)00383-1
  30. Chester, P. F.; Bradhurst, D. H. Nature 1963, 199, 1056. https://doi.org/10.1038/1991056a0
  31. Breckenridge, R. G.; Hosler, W. R. Phys. Rev. 1953, 91, 793. https://doi.org/10.1103/PhysRev.91.793
  32. Varghese, O. K.; Grimes, C. A. Solar Energy Materials and Solar Cells 2008, 92, 374. https://doi.org/10.1016/j.solmat.2007.11.006
  33. Hartmann, P.; Lee, D.-K.; Smarsly, B. M.; Janek, J. ACS Nano. 2010, 4, 3147. https://doi.org/10.1021/nn1004765
  34. Smarsly, B.; Grosso, D.; Brezesinski, T.; Pinna, N.; Boissière, C.; Antonietti, M.; Sanchez, C. Chemistry of Materials 2004, 16, 2948. https://doi.org/10.1021/cm0495966
  35. Ko, Y.-S.; Koh, C.-W.; Lee, U. H.; Kwon, Y.-U. Microporous and Mesoporous Materials 2011, 145, 141. https://doi.org/10.1016/j.micromeso.2011.05.008
  36. Wu, Q. L.; Rankin, S. E. Journal of Sol-Gel Science and Technology 2011, 60, 81-90. https://doi.org/10.1007/s10971-011-2553-1

Cited by

  1. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania vol.5, pp.1, 2017, https://doi.org/10.3390/inorganics5010015
  2. Switchable Intrinsic Defect Chemistry of Titania for Catalytic Applications vol.8, pp.12, 2013, https://doi.org/10.3390/catal8120601