• Title/Summary/Keyword: Photoelectrochemical solar cell

검색결과 40건 처리시간 0.025초

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.10-18
    • /
    • 2010
  • Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

국내 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Photoelectrochemical Hydrogen Production)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.64-71
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic immersing type photoelectrochemical hydrogen production. We also make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the immersing type photoelectrochemical system was estimated as 8,264,324 won/$kgH_2$. It is expected that the production cost by photoelectrochemical hydrogen production can be reduced to 26,961 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 10% of the current level. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

CdSe-sensitized Photoelectrochemical Solar Cell Prepared by Spray Pyrolysis Deposition Method

  • Im, Sang-Hyuk;Lee, Yong-Hui;Seok, Sang-Il
    • 전기화학회지
    • /
    • 제14권2호
    • /
    • pp.104-109
    • /
    • 2011
  • We fabricated CdSe-sensitized photoelectrochemical solar cell by depositing CdSe nanoparticles on nanoporous $TiO_2$ (np-$TiO_2$) via spray pyrolysis deposition method. By adjusting the amount of CdSe-sensitizer deposited on np-$TiO_2$, we can fabricate an efficient CdSe-sensitized solar cell (${\eta}$ = 3.0% under 1 sun irradiation) in polysulfide liquid electrolyte.

태양전지를 이용한 국내 Window Type 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Window Type Photoelectrochemical Hydrogen Production Utilizing Solar Cells)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.595-603
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic window type photoelectrochemical hydrogen production utilizing solar cells. We make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the window type photoelectrochemical system was estimated as 1,168,972 won/$kgH_2$. It is expected that hydrogen production cost can be reduced to 47,601 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 25% of the current level. We also evaluate the hydrogen production cost of the water electrolysis using the electricity produced by solar cells. The corresponding hydrogen production cost was estimated as 37,838 won/$kgH_2$. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

  • Chae, Sang Youn;Jung, Hejin;Joo, Oh-Shim;Hwang, Yun Jeong
    • Rapid Communication in Photoscience
    • /
    • 제4권4호
    • /
    • pp.82-85
    • /
    • 2015
  • Photoelectrochemical cell (PEC) is one of the attractive ways to produce clean and renewable energy. However, solar to hydrogen production via PEC system generally requires high external bias, because of material's innate electronic band potential relative to hydrogen reduction potential and/or charge separation issue. For spontaneous photo-water splitting, here, we design dye-sensitized solar cell (DSSC) and their monolithic tandem cell incorporated with a $BiVO_4$ photoanode. $BiVO_4$ has high conduction band edge potential and suitable band gap (2.4eV) to absorb visible light. To achieve efficient $BiVO_4$ photoanode system, electron and hole mobility should be improved, and we demonstrate a tandem cell in which $BiVO_4/WO_3$ film is connected to cobalt complex based DSSC.

One-Dimensional Core/Shell Structured TiO2/ZnO Heterojunction for Improved Photoelectrochemical Performance

  • Ji, In-Ae;Park, Min-Joon;Jung, Jin-Young;Choi, Mi-Jin;Lee, Yong-Woo;Lee, Jung-Ho;Bang, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2200-2206
    • /
    • 2012
  • One-dimensional $TiO_2$ array grown on optically transparent electrode holds a promise as a photoelectrode for photoelectrochemical water splitting; however, its crystal structure is rutile, imposing constraints on the potent use of this nanostructure. To address this issue, a heterojunction with type-II band alignment was fabricated using atomic layer deposition (ALD) technique. One-dimensional core/shell structured $TiO_2$/ZnO heterojunction was superior to $TiO_2$ in the photoelectrochemical water splitting because of better charge separation and more favorable Fermi level. The heterojunction also possesses better light scattering property, which turned out to be beneficial even for improving the photoelectrochemical performance of semiconductor-sensitized solar cell.

태양광과 물로부터 수소생산을 위한 광전기화학전지의 CdSe/$TiO_2$ 전극 (CdSe/$TiO_2$ electrode of photoelectrochemical[PEC] cell for hydrogen production from water using solar energy)

  • 이은호;정광덕;주오심
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.130-135
    • /
    • 2005
  • Cadmium selenide is one of the group IIb-VI compounds, which is the promising semiconductor material due to its wide range of technological applications in optoelectronic devices such as photoelectrochemical cells, solid state solar cells, thin film photoconductors etc. CdSe has optical band gap of 1.7-1.8eV and proper conduction band edge for water splitting. CdSe films are coated with small thickness(20-50nm) nanocrystalline $TiO_2$ film by electrodeposition or chemical bath deposition methods and PEC properties of CdSe and CdSe/$TiO_2$ sandwich structure are studied. The photoactivity of CdSe and CdSe/$TiO_2$ films deposited on titanium substrate is studied in aqueous electrolyte of 1M NaOH solution. Photocurrent and photovoltage obtained were of the order of 2-4 mA/$cm^2$ and 0.5V, respectively, under the intensity of illumination of 100 mW/$cm^2$.

Origin of Nonlinear Device Performance with Illuminated Sun Intensity in Mesoscopic Sb2S3-sensitized Photoelectrochemical Solar Cells using Cobalt Electrolyte

  • Im, Sang-Hyuk;Lee, Yong-Hui;Kim, Hi-Jung;Lim, Choong-Sun;Kang, Yong-Ku;Seok, Sang-Il
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.174-179
    • /
    • 2011
  • The mesoscopic $Sb_2S_3$-sensitized photoelectrochemical solar cells using cobalt redox electrolyte exhibit nonlinear behavior of power conversion efficiency with illuminated sun intensity. From the measurement of bulk diffusion and electrochemical impedance spectroscopy studies, we suggest that the nonlinearity of device performance with illuminated sun intensity is attributed not to the slow bulk diffusion problem of cobalt electrolyte but to the limited mass transport in narrowed pore volume in mesoscopic $TiO_2$ electrode.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화 (Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage)

  • 고현주;박이슬
    • 청정기술
    • /
    • 제27권1호
    • /
    • pp.85-92
    • /
    • 2021
  • 태양에너지를 활용하여 전력을 생산하는 시스템인 Solar water battery는 광전기화학전지와 에너지저장시스템을 결합한 것으로 추가적인 외부 전압 없이 태양에너지의 전환과 저장을 동시에 할 수 있다. Solar water battery는 광전극, 저장전극 그리고 상대전극으로 구성되어 있고, 이들의 선택과 조합은 시스템의 성능과 효율에 있어 중요한 역할을 한다. 본 연구에서는 Solar water battery의 구성요소들을 변화시켜 시스템에 미치는 영향을 알고자 하였다. 상대전극이 방전 시 미치는 영향, 광전극과 저장전극의 전극 재료, 전해질의 종류에 따른 태양에너지 전환 효율과 저장 용량에 미치는 영향에 대해 연구하였다. 이들의 최적화된 구성(TiO2 : NaFe-PB : Pt foil)에서 15시간동안의 광조사 후의 방전 용량이 72.393 mAh g-1으로 시스템 구성 조건에 따라 광전환/저장 효율이 크게 영향을 받음을 확인 할 수 있었다. 또한, 유기 오염물질을 광전극 반응조내 전해질에 첨가하여 광전하를 효율적으로 분리시킴으로써 광전류 증가시켰으며, 이로 인해 저장용량이 향상되고, 동시에 오염물질도 분해시킬 수 있음을 확인하였다. 이처럼 Solar water battery는 추가적인 외부 전압이 필요없는 새로운 친환경 태양에너지 전환/저장 시스템이며, 나아가 수처리에도 활용할 수 있을 것으로 기대된다.