• Title/Summary/Keyword: Photodetector

Search Result 242, Processing Time 0.026 seconds

Analysis on the Electrical.Optical Properties and Fabrication of ZnO Based UV Photodetector with p-type Inversion Layer (p형 반전층을 갖는 ZnO계 자외선 수광소자의 제작과 전기적.광학적 특성 분석)

  • Oh, Sang-Hyun;Kim, Deok-Kyu;Choi, Dai-Seub;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.367-368
    • /
    • 2007
  • To investigate the 2nO thin films which are interested in the next generation of short wavelength LEDs and Lasers and UV photodetector with p-type inversion layer, the ZnO thin films were deposited by RF sputtering system. Gas ratios and work pressure is Ar : $O_2$ = 4 : 1 and 15 mTorr, respectively, and the purity of ZnO target is 5N. The ZnO thin films were deposited at 300, 450, and $650^{\circ}C$. The current-voltage, responsivity and quantum efficiency of devices were studied and compared with each devices.

  • PDF

CMOS Binary Image Sensor Using Double-Tail Comparator with High-Speed and Low-Power Consumption

  • Kwen, Hyeunwoo;Jang, Junyoung;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.82-87
    • /
    • 2021
  • In this paper, we propose a high-speed, low-power complementary metal-oxide semiconductor (CMOS) binary image sensor featuring a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector based on a double-tail comparator. The GBT photodetector forms a structure in which the floating gate (n+ polysilicon) and body of the PMOSFET are tied, and amplifies the photocurrent generated by incident light. The double-tail comparator compares the output signal of a pixel against a reference voltage and returns a binary signal, and it exhibits improved power consumption and processing speed compared with those of a conventional two-stage comparator. The proposed sensor has the advantages of a high signal processing speed and low power consumption. The proposed CMOS binary image sensor was designed and fabricated using a standard 0.18 ㎛ CMOS process.

Thin film growth of ε-Ga2O3 and photo-electric properties of MSM UV photodetectors (ε-Ga2O3 박막 성장 및 MSM UV photodetector의 전기광학적 특성)

  • Park, Sang Hun;Lee, Han Sol;Ahn, Hyung Soo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.179-186
    • /
    • 2019
  • In this study, we investigated the structural properties of $Ga_2O_3$ thin films and the photo-electrical properties of metal-semiconductor-metal (MSM) photodetectors deposited by Ti/Au electrodes. $Ga_2O_3$ thin films were grown at different temperatures using metal organic chemical vapor deposition (MOCVD). The crystal phase of $Ga_2O_3$ changed from ${\varepsilon}$-phase to ${\beta}$-phase depending on the growth temperature. The crystal structure of ${\varepsilon}-Ga_2O_3$ was confirmed by X-ray diffraction (XRD) analysis and the formation mechanism of crystal structure was discussed by scanning electron microscopy (SEM) images. From the results of current-voltage (I-V) and time-dependent photoresponse characteristics under the illumination of external lights, we confirmed that the MSM photodetector fabricated by ${\varepsilon}-Ga_2O_3$ showed much better photocurrent characteristics in the 266 nm UV range than in the visible range.

Absorption Coefficients for the Bound-to-continuum Transitions in a Biased Quantum-well Infrared Photodetector

  • Choe Jeong-woo;Hwang Hyung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.131-134
    • /
    • 2005
  • We have proposed a method to calculate the absorption coefficients for the bound-to-continuum transitions in a strong biased quantum-well infrared photodetector. We have applied this method to a manufactured sample of typical device parameters, and obtained good agreements with experiments. The absorption coefficients evaluated are up to 5,700/cm at some particular operating conditions. We have also been able to make a qualitative explanation for the bias dependence of response.

Metal Oxide-Based Heterojunction Broadband Photodetector (산화물 반도체 기반의 이종접합 광 검출기)

  • Lee, Sang-eun;Lee, Gyeong-Nam;Ye, Sang-cheol;Lee, Sung-ho;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.165-170
    • /
    • 2018
  • In this study, double-layered TCO (transparent conductive oxide) films were produced by depositing two distinct TCO materials: $SnO_2$ works as an n-type layer and ITO (indium-doped tin oxide) serves as a transparent conductor. Both transparent conductive oxide-films were sequentially deposited by sputtering. The electrical and optical properties of single-layered TCO films ($SnO_2$) and double-layered TCO ($ITO/SnO_2$) films were investigated. A TCO-embedding photodetector was realized through the formation of an $ITO/SnO_2/p-Si/Al$ layered structure. The remarkably high rectifying ratio of 400.64 was achieved with the double-layered TCO device, compared to 1.72 with the single-layered TCO device. This result was attributed to the enhanced electrical properties of the double-layered TCO device. With respect to the photoresponses, the photocurrent of the double-layered TCO photodetector was significantly improved: 1,500% of that of the single-layered TCO device. This study suggests that, due to the electrical and optical benefits, double-layered TCO films are effective for enhancing the photoresponses of TCO photodetectors. This provides a useful approach for the design of photoelectric devices, including solar cells and photosensors.

SnS2/p-Si Heterojunction Photodetector (SnS2/p-Si 이종접합 광 검출기)

  • Oh, Chang-Gyun;Cha, Yun-Mi;Lee, Gyeong-Nam;Jung, Bok-Mahn;Kim, Joondong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1370-1374
    • /
    • 2018
  • A heterojunction $SnS_2/p-Si$ photodetector was fabricated by RF magnetron sputtering system. $SnS_2$ was formed with 2-inch $SnS_2$ target. Al was applied as the front and the back metal contacts. Rapid thermal process was conducted at $500^{\circ}C$ to enhance the contact quality. 2D material such as $SnS_2$, MoS2 is very attractive in various fields such as field effect transistors (FET), photovoltaic fields such as photovoltaic devices, optical sensors and gas sensors. 2D material can play a significant role in the development of high performance sensors, especially due to the advantages of large surface area, nanoscale thickness and easy surface treatment. Especially, $SnS_2$ has a indirect bandgap in the single and bulk states and its value is 2 eV-2.6 eV which is considerably larger than that of the other 2D material. The large bandgap of $SnS_2$ offers the advantage for the large on-off current ratio and low leakage current. The $SnS_2/p-Si$ photodetector clearly shows the current rectification when the thickness of $SnS_2$ is 80 nm compared to when it is 135 nm. The highest photocurrent is $19.73{\mu}A$ at the wavelength of 740 nm with $SnS_2$ thickness of 80 nm. The combination of 2D materials with Si may enhance the Si photoelectric device performance with controlling the thickness of 2D layer.

Design and Fabrication of a Si pin Photodetector with Peak Spectral Response in the Red Light for Optical Link (적색 중심 Optical Link용 Si pin Photodetector의 설계 및 제작)

  • 장지근;김윤희;이지현;강현구;이상열
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • We have fabricated and evaluated a new Si pin photodetector for APF optical link. The fabricated device has the $p^{+}$-guard ring around the metal-semiconductor contact and the web patterned $p^{+}$-shallow diffused region in the light absorbing area. From the measurements of electo-optical characteristics under the bias of -5 V, the junction capacitance of 4 pF and the dark current of 180 pA were obtained. The optical signal current of 1.22 $\mu$A and the responsivity of 0.55 A/W were obtained when the 2.2 $\mu$W optical power with peak wavelength of 670 nm was incident on the device. The fabricated device showed the maximum spectral response in a spectrum of 650-700 nm. It is expected that the fabricated device can be very useful for detecting the optical signal in the application of red light optics.

  • PDF

Photo-response of Polysilicon-based Photodetector depending on Deuterium Incorporation Method (중수소 결합 형성 방법에 따른 다결정 실리콘 광검출기의 광반응 특성)

  • Lee, Jae-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.29-35
    • /
    • 2015
  • The photo-response characteristics of polysilicon based metal-semiconductor-metal (MSM) photodetector structure, depending on deuterium treatment method, was analyzed by means of the dark-current and the light-current measurements. Al/Ti bilayer was used as a Schottky metal. Our purpose is to incorporate the deuterium atoms into the absorption layer of undoped polysilicon, effectively, for the defect passivation. We have introduced two deuterium treatment methods, a furnace annealing and an ion implantation. In deuterium furnace annealing, deuterium bond was distributed around polysilicon surface where the light current flows. As for the ion implantation, even thought it was a convenient method to locate the deuterium inside the polysilicon film, it creates some damages around polysilicon surface. This deteriorated the photo-response in our photodetector structure.

Impact of Oxygen Annealing on Deep-level Traps in Ga2O3/SiC Photodetectors (산소 후열처리에 따른 Ga2O3/SiC photodetector의 전기 광학적 특성)

  • Seung-Hwan Chung;Tae-Hee Lee;Soo-Young Moon;Se-Rim Park;Hyung-Jin Lee;Geon-Hee Lee;Sang-Mo Koo
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.288-295
    • /
    • 2023
  • In this work, we investigated the role of oxygen annealing on the performance of Metal-Semiconductor-Metal (MSM) UV photodetector (PD) fabricated by radio frequency (RF)-sputtered Ga2O3 films on SiC substrates. Oxygen-nnealed Ga2O3 films displayed a notable increase in photocurrent and a faster decay time, indicating a decrease in persistent photoconductivity. This improvement is attributed to the reduction of oxygen vacancies and variation of defects by oxygen post-annealing. Our findings provide valuable insights into enhancing PD performance through oxygen annealing.

Metal-Semiconductor-Metal Photodetector Fabricated on Thin Polysilicon Film (다결정 실리콘 박막으로 구성된 Metal-Semiconductor-Metal 광검출기의 제조)

  • Lee, Jae-Sung;Choi, Kyeong-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.276-283
    • /
    • 2017
  • A polysilicon-based metal-semiconductor-metal (MSM) photodetector was fabricated by means of our new methods. Its photoresponse characteristics were analyzed to see if it could be applied to a sensor system. The processes on which this study focused were an alloy-annealing process to form metal-polysilicon contacts, a post-annealing process for better light absorption of as-deposited polysilicon, and a passivation process for lowering defect density in polysilicon. When the alloy annealing was achieved at about $400^{\circ}C$, metal-polysilicon Schottky contacts sustained a stable potential barrier, decreasing the dark current. For better surface morphology of polysilicon, rapid thermal annealing (RTA) or furnace annealing at around $900^{\circ}C$ was suitable as a post-annealing process, because it supplied polysilicon layers with a smoother surface and a proper grain size for photon absorption. For the passivation of defects in polysilicon, hydrogen-ion implantation was chosen, because it is easy to implant hydrogen into the polysilicon. MSM photodetectors based on the suggested processes showed a higher sensitivity for photocurrent detection and a stable Schottky contact barrier to lower the dark current and are therefore applicable to sensor systems.