• Title/Summary/Keyword: Photochemical model

Search Result 88, Processing Time 0.026 seconds

Estimate of Surface Ozone Concentration on Sunny Summer Days in Seoul Area by the Photochemical-Trajectory Model (광화학-궤적 모델에 의한 여름철 맑은 날 서울지방의 지상 오존 농도 추정)

  • 이시우;이광목
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.497-506
    • /
    • 2002
  • A Photochemical-Trajectory model was used to understand the production of ozone in the atmospheric boundary layer. This model was composed of the trajectory and the photochemical models. To calculate trajectories of air parcels, winds were obtained from the three-dimensional nonhydrostatic mesoscale model (PSU/NCAR MM5V2), and the results were interpolated into constant height surfaces. Numerical integration in the trajectory model was performed by the Runge-Kutta method. The photochemical model consisted of chemical reactions and photodissociation processes. Chemical equations were integrated by the semi-implicit Bulirsch-Stoer method. We performed our experiments from 21 July to 23 July 1994 during the summer time for Seoul area. During the time of maximum ozone concentration in Seoul, four trajectories of air parcels which traveled from Inchon to Seoul were selected. Ozone concentrations estimated by two models are compared with observed one in Seoul area and the photochemical-trajectory model is better fitted than pure photochemical model. During the selected period, high ozone concentrations in Seoul area were more influenced by transferred pollutants from Inchon than emitted pollutants in Seoul.

A Study on the Photochemical Reaction Model of Air Pollutants (大氣汚染物質의 光化學 反應 모델에 關한 硏究)

  • 이화운;박종길
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.74-83
    • /
    • 1992
  • Photochemical reactions are important for the diurnal variation of the concentrations of air pollutants in the urban atmosphere. A photochemical reaction model was developed, which includes in terms of the effective chemical reaction. Various experimental results were introduced to the construction of model. To verify the applicability of the model, the simulated results were compared with those observed. By comparing the simulated results with those observed, it was shown that those two are in good agreement qualitatively. As a result, the photochemical reaction model which has been developed in this study is found to be useful for the prediction of concentrations of air pollutants in the atmosphere.

  • PDF

Case study of ozone photochemistry in the Seoul metropolitan area during the summer 2003 (2003년 여름동안 서울지역에서의 오존의 광화학적 특성에 대한 사례 연구)

  • Shon Zang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.749-760
    • /
    • 2005
  • This study examines the local ozone photochemistry in the urban air. The photochemical formation and destruction of ozone was modeled using a photochemical box model. For the model prediction of ozone budget, measurements were carried out from an urban monitoring station in Seoul ($37.6^{\circ}N,\;127^{\circ}E$), Korea for intensive sampling time period (Jun. $1\~15$, 2003). Photochemical process is likely to play significant role in higher ozone concentrations during the sampling period. The results of model simulation indicated that photochemical ozone production pathway was the reaction of NO with $HO_2$ while ozone destruction was mainly controlled by a photochemical destruction pathway, a reaction of $H_2O$ with $O(^1D).$ The contribution of NMHCs to formation and destruction of ozone in the urban was significant. This was entirely different from remote marine environment. The rates of net photochemical ozone production ranged from 0.1 to 1.3 ppbv $h^{-1}$ during the study period.

Photothermal and Photochemical Investigation on Laser Ablation of the Polyimide by 355nm UV Laser Processing (355nm UV 레이저 가공에 의한 폴리이미드의 광화학적 및 광열적 어블레이션에 관한 연구)

  • Oh, Jae-Yong;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.147-152
    • /
    • 2007
  • UV laser ablation of polyimide is a combination of photochemical and photothermal mechanism. Photochemical mechanism is that molecular bonds are broken by photon energy and photothermal is evaporation and melt expulsion. When the laser processing, the etching depth needs to be calculated for prediction of processing result. In this paper, in order to predict the laser etching depth of polyimide by UV laser with the wavelength of 355nm, the theoretical model which includes both the photothermal and the photochemical effect was introduced. The model parameters were obtained by comparing with experimental results. The 3rd harmonic $Nd:YVO_4$ laser system was used in the experiment. From these experimental and theoretical results, the laser ablation of a polyimide was verified to achieve the highest quality microstructure.

Sensitivity Analysis of the CMB Modeling Results by Considering Photochemical Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in the Seoul atmosphere (서울 대기에서 PAHs 광화학반응을 고려한 CMB 수용모델 결과 검토)

  • Cho, Ye Seul;Jung, Da Bin;Kim, In Sun;Lee, Ji Yi;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Several studies have been carried out on the source contribution of the particulate Polycyclic Aromatic Hydrocarbons (PAHs) over Seoul by using the Chemical Mass Balance Model (CMB)(Lee and Kim, 2007; Kim et al., 2013). To confirm the validity of the modeling results, the modified model employing a photochemical loss rate along with varying residence times and the standard model that considers no loss were compared. It was found that by considering the photochemical loss rate, a better performance was obtained as compared to those obtained from the standard model in the CMB calculation. The modified model estimated higher contributions from coke oven, transportation, and biomass burning by 4 to 8%. However, the order of the relative importance of major sources was not changed, coke oven followed by transportation and biomass burning. Thus, it was concluded that the standard CMB model results are reliable for identifying the relative importance of major sources.

Modeling of Polymer Ablation with Excimer Lasers (폴리머 미세가공을 위한 레이저 어블레이션 모델링)

  • Yoon, Kyung-Koo;Bang, Se-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.60-68
    • /
    • 2005
  • To investigate the effects of beam focusing in the etching of polymers with short pulse Excimer lasers, a polymer etching model of SSB's is combined with a beam focusing model. Through the numerical simulation, it was found that in the high laser fluence region, SSB model considering both photochemical and thermal contribution is considered to be suitable to predict the etched hole shape than a simple photochemical etching model. The average temperature distribution into the substance obtained by assuming 1-D heat transfer is found to be fairly similar to the fluence distribution on the ablated surface. The experimental etching data fur polymers are used to give material properties for ablation model. The fitted etch depth curve gives a nice agreement with the experimental data.

A Study on the Relationship among the Concentration of Reacting Air Pollutants in Urban Atmosphere (도시 대기중에서 반응성 대기오염물질의 농도변화 상관성에 관한 연구)

  • Lee, Hwa-Woon;Kim, Yoo-Keun;Jang, Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.351-357
    • /
    • 1997
  • In the Atmosphere under the various physical and chemical condition different chemical reactions occur and there are a number of air pollutants which are generated by photochemical reaction by absorbing solar energy. Therefor various testing simulation was done as foundation work to develop the numerical model for the prediction of concentration of air pollutants. It was shown change of msjor air pollutants concentration In according to variation of photodissociation speed constant, Kl and Initial condition of air pollutants concentration which plays major role In photochemical reaction. The photochemical reaction model which was used In this study Is found to be useful for understanding relationship among the concentration of reacting air pollutants and the prediction of concentration of air pollutants in urban atmosphere.

  • PDF

Photochemical Modeling of July 1994 High-Ozone Episode in the Greater Seoul Area

  • Kim, Jin-Young;Ghim, Young-Sung;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.55-64
    • /
    • 1999
  • The CIT(California Institute of Technology) three-dimensional Eulerian photochemical model was applied to the Greater Seoul Area, Korea for July 24, 1994, a day of the 9-day ozone episode to understand the characteristics of photochemical air pollution problems in the area. The modeling domain was 60km$\times$60km with the girl size of 2km$\times$2km. As the base case emissions, air pollutant emission data of the National Institute of Environmental Research, Korea for the year of 1991 were used with modifications based on EKMA(Empirical Kinetic Modeling Approach) resutls. Comparisons between predicted and observed concentrations showed that the model predicted the peak concentration over the domain reasonably. It was found that the location of the peak ozone concentration was mainly decided by metorological conditions. But the model could not resolve the spatial variations of concentration station by station, which was mainly caused by localized variations in emission and meteorology.

  • PDF

Numerical Simulation of Ozone Concentration using the Local Wind Model in Pusan Coastal Area, Korea (부산연안역에서 국지풍모델을 이용한 오존농도의 수치모의)

  • Jeon, Byung-Il;kim, Yoo-Keun;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.335-350
    • /
    • 1997
  • Numerical simulations of photochemical air pollution (CBM: Carbon-Bond Mechanisms under a theoretical three-dimensional local wind system are carried to clarify the fundamental characteristics of the effects of local wind on photochemical air pollution. According to the AWS data of Pusan coastal area and KMA, the surface wind of Pusan during summertime showed a very remarkable land and sea breeze circulation. The ozone concentration distribution using local wind model showed that high ozone concentration zone near coastal area moved toward inland In the afternoon. This change implies a sea breeze Increases the ozone concentration, but a land breeze decreases it in Pusan coastal area.

  • PDF

Numerical Simulation of Complicated Photochemical Reactions Occurring in the Atmosphere (대기내 발생하는 복잡한 광화학반응에 대한 수치실험)

  • Won Gyeong-Mee;Kim Yoo-Keun;Lee Haw-Woon;Kim Hee-Jeoung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 2006
  • In predicting oxidants concentration, the most important fact is to select a suitable photochemical reaction mechanism. Sensitivity analysis of $O_3$ and other important photochemical oxidants concentrations was conducted by using CBM-IV model. The predicted oxidants concentration was considerably related with the initial concentration of formaldehyde, $[NO_2]/[NO],\;NO_x$, RH and RCHO. As the initial concentration of formaldehyde increased, concentration of $NO_2$ increased. $O_3$ concentration was proportional to the $[NO_2]/[NO]$ ratio. When the initial concentrations of RH and RCHO were high, photochemical reaction was more reactive, including more rapid conversion of NO to $NO_2$ and increased oxidants. Also, the sensitivities of ozone formation to rate constants, $K_l,\;K_2\;and\;K_3$ in the $NO_2$ photolysis were studied.