• Title/Summary/Keyword: Photocatalytic process

Search Result 234, Processing Time 0.03 seconds

PHOTOCATALYTIC REACTION OF $TiO_2$ FOR PURIFICATION OF AIR

  • Yin, X.J.;Cai, R.X.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.336-339
    • /
    • 1999
  • Photo-excited $TiO_2$ surface has a strong ability to induce various chemical reactions. Our study concentrates mainly on the utilisation of light energy to induce reactive radicals for environmental protection application. For instance, we have successfully used TiO$_2$ to break down foul smelling substances in air. In order to retain and separate the $TiO_2$ catalyst from the reactants and products, $TiO_2$ was immobilised by fixing onto various substrates. $TiO_2$ catalyst coated onto glass, wall paper and painted panel was found to show significant deodorising effect. The deodorising effect continues as long as$TiO_2$ is exposed to light irradiation.

  • PDF

Fabrication and Characterization of Y2Ti2O7 Powder and Thick Film by Chemical Processing (화학적 공정을 이용한 Y2Ti2O7 분말과 후막 제조 및 특성)

  • Lee, Won-Joon;Choi, Yeon-Bin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.289-293
    • /
    • 2017
  • $Y_2Ti_2O_7$ nanoparticles (0.3 mol%) have been successfully synthesized by the co-precipitation process. The samples, adjusted to pH7 with ammonia solution as catalyst and calcined at $700{\sim}900^{\circ}C$, exhibit very fine particles with close to spherical shape and average size of 10-30 nm. It was possible to control the size of the synthesized $Y_2Ti_2O_7$ particles by manipulating the conditions. The $Y_2Ti_2O_7$ nanoparticles were coated on a glass substrate by a dipping coating process with inorganic binder. The $Y_2Ti_2O_7$ solution coated on the glass substrate had excellent adhesion of 5B; pencil hardness test results indicated an excellent hardness of 6H. The thickness of the thick film was about $30{\mu}m$. Decomposition of MB on the $Y_2Ti_2O_7$ thin film shows that the photocatalytic properties were excellent.

Synthesis and Photocatalytic Activity of TiO2-ZrO2 Nano-Sized Powders by Sol-Gel Process

  • Han, Jae-Kil;Saito Fumio;Park, Jong-Gu;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.7-10
    • /
    • 2005
  • [ $TiO_{2}-ZrO_{2}$ ] powders were successfully synthesized by the sol-gel process using titanium iso-propoxide as a precursor. The amorphous $TiO_{2}$ particles, 70 nm in size, homogenously adhered to the surface of $ZrO_{2}$ the powders. After calcination at $450^{circ}C$, most of the $TiO_{2}$ powders appeared as an anatase type, whereas they changed to a rutile phase at $750^{circ}C$. For comparison of photocata­lytic activity, $TiO_{2}-ZrO_{2}$ nano-sized powders calcined at $450^{circ}C,\;600^{circ}C,\;and\;750^{circ}C$ were used. In the $TiO_{2}-20wt\%$ $ZrO_{2}$ powders cal­cined at $450^{circ}C$, there was excellent removal efficiency of Methyl Orange (MO). For the calcination temperature increased, $TiO_{2}­ZrO_{2}$ nano-sized powders increased $ZrO_{2}$ contents showed the good photoactivity for the photooxidation of MO.

Research Trends on Chemical Mechanical Polishing Using Ultraviolet Light (자외선 광을 활용하는 화학기계적 연마에 관한 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.247-254
    • /
    • 2022
  • Chemical mechanical polishing (CMP) is a hybrid surface-polishing process that utilizes both mechanical and chemical energy. However, the recently emerging semiconductor substrate and thin film materials are challenging to process using the existing CMP. Therefore, previous researchers have conducted studies to increase the material removal rate (MRR) of CMP. Most materials studied to improve MRR have high hardness and chemical stability. Methods for enhancing the material removal efficiency of CMP include additional provision of electric, thermal, light, mechanical, and chemical energies. This study aims to introduce research trends on CMP using ultraviolet (UV) light to these methods to improve the material removal efficiency of CMP. This method, photocatalysis-assisted chemical mechanical polishing (PCMP), utilizes photocatalytic oxidation using UV light. In this study, the target materials of the PCMP application include SiC, GaN, GaAs, and Ru. This study explains the photocatalytic reaction, which is the basic principle of PCMP, and reviews studies on PCMP according to materials. Additionally, the researchers classified the PCMP system used in existing studies and presented the course for further investigation of PCMP. This study aims to aid in understanding PCMP and set the direction of future research. Lastly, since there have not been many studies on the tribology characteristics in PCMP, research on this is expected to be required.

Photocatalytic CO2 Reduction over g-C3N4 Based Materials

  • Cai, Wei-Qin;Zhang, Feng-Jun;Kong, Cui;Kai, Chun-Mei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.581-588
    • /
    • 2020
  • Reducing CO2 into high value fuels and chemicals is considered a great challenge in the 21st century. Efficiently activating CO2 will lead to an important way to utilize it as a resource. This article reviews the latest progress of g-C3N4 based catalysts for CO2 reduction. The different synthetic methods of g-C3N4 are briefly discussed. Article mainly introduces methods of g-C3N4 shape control, element doping, and use of oxide compounds to modify g-C3N4. Modified g-C3N4 has more reactive sites, which can significantly reduce the probability of photogenerated electron hole recombination and improve the performance of photocatalytic CO2 reduction. Considering the literature, the hydrothermal method is widely used because of its simple equipment and process and easy control of reaction conditions. It is foreseeable that hydrothermal technology will continue to innovate and usher in a new period of development. Finally, the prospect of a future reduction of CO2 by g-C3N4-based catalysts is predicted.

Treatment of Malodorous Waste Air Containing Ammonia Using Hybrid System Composed of Photocatalytic Reactor and Biofilter (암모니아 함유 악취폐가스의 광촉매반응공정과 바이오필터로 구성된 하이브리드시스템 처리)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.272-278
    • /
    • 2013
  • The hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing ammonia which is a major air pollutant emitted from composting factories and many publicly owned treatment works. Total ammonia removal efficiency of the hybrid system was maintained to be ca. 80% even though its inlet loads were increased at a higher operating stage according to an operating schedule of the hybrid system. The ammonia removal efficiency of photocatalytic reactor was decreased from 65% to 22% as ammonia inlet loads to photocatalytic reactor were increased. In spite of same inlet loads of ammonia to the photocatalytic reactor, the ammonia removal efficiency of photocatalytic reactor with lower ammonia concentration of fed-waste air was higher than that with higher ammonia concentration of fed-waste air. To the contrary, during the first half of the hybrid system operation the ammonia removal efficiency of a biofilter was quite suppressed while, despite of increased ammonia inlet loads, the ammonia removal efficiency of the biofilter was continuously increased to 78% and reached the ammonia removal efficiency similar to what Lee et al. attained. The maximum ammonia elimination capacity of the photocatalytic reactor was observed to be ca. 16 g-N/$m^3$/h. In an incipient stage of hybrid system run, the ammonia elimination capacity of the biofilter showed little sensitivity against ammonia inlet loads to the hybrid system. However, in the 2nd half of its run, the ammonia elimination capacity of the biofilter was increased abruptly in case of high ammonia inlet loads to the hybrid system. In 6th stage of hybrid system run, total ammonia inlet load attained at ca. 80 g-N/$m^3$/h corresponding to 16 g-N/$m^3$/h of ammonia elimination capacity of the photocatalytic reactor. Then, the remaining ammonia inlet load to the 2nd and main process of the biofilter and its elimination capacity was expected and shown to be ca 64 g-N/$m^3$/h and ca 48 g-N/$m^3$/h, respectively. The ammonia elimination capacity of the biofilter was close to 1,200 g-N/$m^3$/day of the maximum elimination capacity of the investigation performed by Kim et al.

Recirculating Integrated System for the Treatment of Authentic Integrated-textile-dyeing Wastewater from Dyeing Industrial Complex (염색산업단지 종합폐수처리용 재순환 통합시스템)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.837-845
    • /
    • 2017
  • A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reactor packed with calcined $TiO_2$ coated-glass beads as photocatalyst-support, was constructed and was run to treat authentic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total $COD_{cr}$ removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process's contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of $COD_{cr}$. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than $COD_{cr}$. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated system on RE(tot) of $COD_{cr}$ and colors, was analysed by establishing its model equation with an analytic correlation.

Fabrication and Photocatalytic Activity of TiO2 Nanofibers Dispered with Silica Nanoparticles (SiO2 나노입자가 분산된 TiO2 나노섬유의 제작 및 광촉매 특성 분석)

  • Choi, Kwang-Il;Lee, Woohyoung;Beak, Su-Wung;Song, Jinho;Lee, Sukho;Lim, Cheolhyun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.667-671
    • /
    • 2014
  • In this study, we suggest a facile method to control conditions of single component independently when preparing consisting two-component metal oxides nanofiber by simply dispersing nanoparticles in precursor solution. The well dispersed $SiO_2$ nanoparticles in $TiO_2$ nanofibers were successfully synthesized through a simple electrospinning process. The as-synthesized nanodfibers were investigated via FE-SEM, XRD and EDS for structural studies, furthermore, the analysis of UV-VIS and photocatalytic activity were carried out for demonstrate the effect of $SiO_2$ nanoparticles dispersed in $TiO_2$ nanofibers. As a result, $TiO_2$ nanofibres dispersed with $SiO_2$ nanoparticles have enhanced photocatalytic activity than that of $TiO_2$ nanofibres only. In this strategy, the introduction of $SiO_2$ nanoparticles in $TiO_2$ nanofibers were attribute to enlarge absorption in the visible region (380~440 nm). Additionally, $Br{\o}nsted$ acid sites generated in each metal oxide of Ti and Si increase OH radicals efficiently as well as it limit recombination loss by holding photogenerated electrons for high efficient photocatalytic activity.

The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System (CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향)

  • Cho, Sang-Hyun;Cui, Mingcan;Nam, Sang-Geon;Jung, Hee-Suk;Khim, Jee-Hyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1147-1153
    • /
    • 2010
  • To evaluate the solar photocatalytic degradation efficiency of chloroform in a real solar-light driven compound parabolic concentrators (CPCs) system, $TiO_2$ was irradiated with a metalhalide lamp (1000 W), which has a similar wavelength to sunlight. The results were applied to a pilot scale reactor system by converting the data to a standardized illumination time. In addition, the effects of initial pH and the $TiO_2$ dose on the photocatalytic degradation of chloroform were investigated. The results were compared with the specific surface area (S.S.A) and particle size of $TiO_2$, which changed according to the pH, to determine the relationship between the S.S.A, particle size and the photocatalytic degradation of chloroform. The experiment was carried out at pH 4~7 using 0.1, 0.2, 0.4 g/L of $TiO_2$. The particle size and specific surface area of $TiO_2$ were measured. There was no significant difference between the variables. However, pH affects the particle size distribution and specific surface area of $TiO_2$. Inaddition, the activation of a photocatalyst did not show a linear relationship with the specific surface area of $TiO_2$ in the photocatalytic degradation of chloroform.

Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination (기상 불소화법을 이용한 WO3-xFx 광촉매의 합성 및 광분해 특성)

  • Lee, Hyeryeon;Lim, Chaehun;Lee, Raneun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.632-639
    • /
    • 2021
  • In this research, fluorine doping was performed to enhance the photocatalytic activities of WO3 which were measured using methylene blue dye. WO3-xFx photocatalyts were prepared by a vaper phase fluorination during a sintering for preparing WO3 photocatalysts from a WCl6 precursor. The bandgap energy of WO3 photocatalysts decreased from 2.95 eV to 2.54 eV, and the oxygen vacancies site increased by about 55% after fluorine doping. In addition, the initial degradation efficiency of methylene blue showed that the fluorine doped sample showed a 6-fold increase in photocatalytic activities from 10% to 60% compared to that of the untreated sample. It is believed that fluorine is doped to reduce the band gap of photocatalysts, enabling the catalytic activity with low energy, and that oxygen vacancies-generated surface defects increase the visible light absorption region of WO3 photocatalysts, thereby increasing photocatalytic activity. In this study, it was confirmed that fluorine-doped WO3-xFx photocatalysts with an excellent photocatalytic activity can be manufactured easily using a one-step vaper phase fluorination that does not require a post-treatment process.